• Title/Summary/Keyword: Torsion beam

Search Result 174, Processing Time 0.021 seconds

On triply coupled vibration of eccentrically loaded thin-walled beam using dynamic stiffness matrix method

  • Ghandi, Elham;Shiri, Babak
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.759-769
    • /
    • 2017
  • The effect of central axial load on natural frequencies of various thin-walled beams, are investigated by some researchers using different methods such as finite element, transfer matrix and dynamic stiffness matrix methods. However, there are situations that the load will be off centre. This type of loading is called eccentric load. The effect of the eccentricity of axial load on the natural frequencies of asymmetric thin-walled beams is a subject that has not been investigated so far. In this paper, the mentioned effect is studied using exact dynamic stiffness matrix method. Flexure and torsion of the aforesaid thin-walled beam is based on the Bernoulli-Euler and Vlasov theories, respectively. Therefore, the intended thin-walled beam has flexural rigidity, saint-venant torsional rigidity and warping rigidity. In this paper, the Hamilton‟s principle is used for deriving governing partial differential equations of motion and force boundary conditions. Throughout the process, the uniform distribution of mass in the member is accounted for exactly and thus necessitates the solution of a transcendental eigenvalue problem. This is accomplished using the Wittrick-Williams algorithm. Finally, in order to verify the accuracy of the presented theory, the numerical solutions are given and compared with the results that are available in the literature and finite element solutions using ABAQUS software.

Semi-Rigid connections in steel structures: State-of-the-Art report on modelling, analysis and design

  • Celik, Huseyin Kursat;Sakar, Gokhan
    • Steel and Composite Structures
    • /
    • v.45 no.1
    • /
    • pp.1-21
    • /
    • 2022
  • In the structural analysis of steel frames, joints are generally considered as rigid or hinged considering their moment transfer ability. However, the first studies conducted with the beginning of the 20th century showed that the joints do not actually fit these two definitions. In reality, a joint behaves between these two extreme points and is called semi-rigid. Including the actual state of the joint in the structural analysis provides significant economic advantages, so the subject is an intense field of study today. However, it does not find enough application area in practice. For this reason, a large-scale literature published from the first studies on the subject to the present has been examined within the scope of the study. Three important points have been identified in order to examine a joint realistically; modelling the load-displacement relationship, performing the structural analysis and how to design. Joint modelling methods were grouped under 7 main headings as analytical, empirical, mechanical, numerical, informational, hybrid and experimental. In addition to the moment-rotation, other important external load effects like axial force, shear and torsion were considered. Various evaluations were made to expand the practical application area of semi-rigid connections by examining analysis methods and design approaches. Dynamic behaviour was also included in the study, and besides column-beam connections, other important connection types such as beam-beam, column-beam-cross, base connection were also examined in this paper.

Nonlinear torsional analysis of 3D composite beams using the extended St. Venant solution

  • Yoon, Kyungho;Kim, Do-Nyun;Lee, Phill-Seung
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.33-42
    • /
    • 2017
  • We present in this paper a finite element formulation for nonlinear torsional analysis of 3D beams with arbitrary composite cross-sections. Since the proposed formulation employs a continuum mechanics based beam element with kinematics enriched by the extended St. Venant solutions, it can precisely account higher order warping effect and its 3D couplings. We propose a numerical procedure to calculate the extended St. Venant equation and the twisting center of an arbitrary composite cross-section simultaneously. The accuracy and efficiency of the proposed formulation are thoroughly investigated through representative numerical examples.

Steady State Amplitude Analysis for a Nonlinear Oscillating Cantilever Beam in Case of 1:1 Internal Resonance (비선형 진동 외팔보의 1:1 내부공진 경우 정상 상태 응답 해석)

  • 이수일;장서일;이장무
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.376-383
    • /
    • 1996
  • 보(beam)는 기계 구조 및 항공 우주 구조물의 기본적인 요소로서, 특히 큰 동적 거동을 하는 경우는 비선형성이 두드러지게 나타나는 것으로 알려져 있고[4], 헬리콥터의 회전날개(rotor blade)나 두께가 얇은 고속회전 축등의 경우에는 비틀림(torsion)과 굽힘(bending) 운동이 비선형 연성되어 나타나게 된다. 이러한 비선형 연성 효과를 갖는 경우에는 운동의 양상이 복잡하게 전개된다. 따라서 본 연구에서는 비선형 연성운동이 생기는 이러한 단순 외팔보에 대해 비선형 진동 특성을 파악하고 각 비틀림(internal resonance)현상[5]에 따른 정상상태 진폭 응답의 해석을 그 목적으로 한다.

  • PDF

Dynamic Response Analysis of Composite H-type Cross-section Beams (복합재료 H-형 단면 보의 동적응답 해석)

  • Kim, Sung-Kyun;Song, Oh-Seop
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.583-592
    • /
    • 2010
  • Equations of motion of thin-walled composite H-type cross-section beams exposed to concentrated harmonic and non-harmonic time-dependent external excitations, incorporating a number of nonclassical effects of transverse shear, primary and secondary warping, and anisotropy of constituent materials are derived. The forced vibration response characteristics of a composite H-type cross-section beam exhibiting the circumferentially asymmetric stiffness(CAS) configuration are exploited in connection with the structural bending-torsion coupling resulting from directional properties of fiber reinforced composite materials.

The Theory of Thin-Walled Curved Rectangular Box Beams Under Torsion and Out-of-Plane Bending (비틀림과 평면외 굽힘을 받는 직사각단면 곡선 박판보 이론)

  • Kim, Yun-Yeong;Kim, Yeong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.10 s.181
    • /
    • pp.2637-2645
    • /
    • 2000
  • We propose a new one-dimensional theory for thin-walled curved box beams having rectangular cross sections, in which torsional, out-of-plane bending, warping and distortional deformations are coupled. The major difference between the present theory and existing theories lies in that the present theory takes into account additional distortion as well as warping. To verify the present theory, a standard finite element based on the present theory is developed and used for numerical analysis. A couple of numerical examples indeed confirm that the consideration of warping and distortional deformations is very important.

A Parametric Investigation Into the Aeroelasticity of Composite Helicopter Rotor Blades in Forward Flight (전진비행시 복합재료 헬리콥터 회전익의 공탄성에 대한 파라미터 연구)

  • 정성남;김경남;김승조
    • Journal of KSNVE
    • /
    • v.7 no.5
    • /
    • pp.819-826
    • /
    • 1997
  • The finite element analyses of a composite hingeless rotor blade in forward flight have been performed to investigate the influence of blade design parameters on the blade stability. The blade structure is represented by a single cell composite box-beam and its nonclassical effects such as transverse shear and torsion-related warping are considered. The nonlinear periodic differential equations of motion are obtained by moderate deflection beam theory and finite element method based on Hamilton principle. Aerodynamic forces are calculated using the quasi-steady strip theiry with compressibility and reverse flow effects. The coupling effects between the rotor blade and the fuselage are included in a free flight propulsive trim analysis. Damping values are calculated by using the Floquet transition matrix theory from the linearized equations perturbed at equilibrium position of the blade. The aeroelastic results were compared with an alternative analytic approch, and they showed good correlation with each other. Some parametric investigations for the helicopter design variables, such as pretwist and precone angles are carried out to know the aeroelastic behavior of the rotor.

  • PDF

Developing General Beam Finite Elements with Warping Displacement (뒤틀림 변위를 고려한 일반 빔 유한요소의 개발)

  • Yoon, Kyung-Ho;Lee, Phill-Seung
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.764-767
    • /
    • 2011
  • 본 논문에서는 유한요소법을 이용하여 임의의 단면을 가지는 빔의 비틀림 문제를 해석 할 수 있는 방법론을 제시하였다. 빔 유한요소에서 연속적인 뒤틀림함수를 얻기 위해 각 절점에서 뒤틀림자유도를 정의한 후 빔의 길이 방향으로 보간하였다. 이러한 방법의 사용은 뒤틀림구속효과와 비선형문제에 쉽게 접근 할 수 있게 한다. 또한, 임의의 단면에 대한 뒤틀림함수는 각 단면에서 St.Venant 방정식을 유한요소법을 통해 수치적으로 계산된다. 단면에서 계산된 해는 3차원 일반 빔 요소의 변위장에 매핑된다. 위와 같은 절차를 통해 개발된 빔 유한요소를 사용하면 임의의 단면을 가진 빔 구조물을 자유/구속 뒤틀림조건에서 비틀림, 굽힘, 신축 변형이 복합적으로 고려하여 해석해 낼 수 있다. 이렇게 해석된 결과를 검증하기 위하여 사각단면과 L단면에서의 결과 값을 고찰하였다.

  • PDF

Behaviour and stability of prestressed steel plate girder for torsional buckling

  • Gupta, L.M.;Ronghe, G.N.;Naghate, M.K.
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.65-73
    • /
    • 2003
  • A higher level of engineering standard in the field of construction, is the use of prestressing in building structures. The concept of prestressing steel structures has only recently been widely considered, despite a long and successful history of prestressing concrete members. Several analytical studies of prestressed steel girders were reported in literatures, but much of the work was not studied with reference to the optimal design and behaviour of the prestressed steel plate girder. A plate girder prestressed eccentrically, will behave as a beam-column, which is subjected to axial compression and bending moment which will cause the beam to buckle out. The study of buckling of the prestressed steel plate girder is necessary for stability criteria. This paper deals with the stability of prestressed steel plate girder using concept of "Vlasov's Circle of Stability" under eccentric prestressing force.

Using genetic algorithms method for the paramount design of reinforced concrete structures

  • Xu, Chuanhua;Zhang, Xiliang;Haido, James H.;Mehrabi, Peyman;Shariati, Ali;Mohamad, Edy Tonnizam;Hoang, Nguyen;Wakil, Karzan
    • Structural Engineering and Mechanics
    • /
    • v.71 no.5
    • /
    • pp.503-513
    • /
    • 2019
  • Genetic Algorithms (GAs) have found the best design for reinforced concrete frames. The design of the optimum beam sections by GAs has been unified. The process of the optimum-design sections has satisfied axial, flexural, shear and torsion necessities based on the designing code. The frames' function has contained the function of both concrete and reinforced steel besides the function of the frames' formwork. The results have revealed that limiting the dimension of frame-beam with the dimension of frame-column have increased the optimum function of the structure, thereby reducing the reanalysis requirement for checking the optimum-designed structures through GAs.