• 제목/요약/키워드: Torque Motor

검색결과 2,846건 처리시간 0.026초

가속 토오크 궤환을 이용한 영구자석 동기전동기의 강인제어 (A Robust Control of PM Synchronous Motor Using Accelerating Torque Feedback)

  • 정세교;김창균;박희정;윤명중
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.571-573
    • /
    • 1996
  • A robust control technique of the PM synchronous motor is presented using an accelerating torque feedback. The accelerating torque is estimated by using an adaptive torque observer and then this estimated torque is controlled by a VSC technique. By employing the proposed torque control, the speed control performance of the motor is improved and the load independency can be realized. The simulations carried out for the PM synchronous motor to verily the effectiveness of the proposed control.

  • PDF

PIR Speed Control Method of AC Motors Considering Time Delay in Speed Information

  • Lee, Jung-Ho;Choi, Jong-Woo
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권6호
    • /
    • pp.2289-2297
    • /
    • 2017
  • Applying a periodic load torque to an AC motor generates a ripple, which is synchronized to the frequency of the periodic load torque, at the speed of the motor. Consequently, numerous studies have focused on reducing the speed ripple caused by the load torque. However, it is difficult to reduce the speed ripple when there is a time delay in acquiring speed information, such as that from a sensorless control. Therefore, we propose a speed control method for reducing speed ripples caused by a periodic load torque when there is a time delay in acquiring the speed information. The proposed method is verified by conducting simulations using the Simulink program from MATLAB, and by applying the method to an actual motor in which speed ripples occur due to a periodic load torque that is synchronized with the speed of the motor.

신경회로망을 이용한 동기 릴럭턴스 전동기의 직접토크제어 시스템 (A Direct Torque Control System for Reluctance Synchronous Motor Using Neural Network)

  • 김민회
    • 전기학회논문지P
    • /
    • 제54권1호
    • /
    • pp.20-29
    • /
    • 2005
  • This paper presents an implementation of efficiency optimization of reluctance synchronous motor (RSM) using a neural network (NN) with a direct torque control (DTC). The equipment circuit considered with iron losses in RSM is analyzed theoretically, and the optimal current ratio between torque current and exiting current component are derived analytically. For the RSM driver, torque dynamic can be maintained with DTC using TMS320F2812 DSP Controller even with controlling the flux level because a torque is directly proportional to the stator current unlike induction motor. In order to drive RSM at maximum efficiency and good dynamics response, the Backpropagation Neural Network is adapted. The experimental results are presented to validate the applicability of the proposed method. The developed control system show high efficiency and good dynamic response features with 1.0 [kW] RSM having 2.57 inductance ratio of d/q.

광범위한 속도영역의 운전을 위한 IPMSM의 순시 토크제어 (Instantaneous Torque Control of IPMSM for Drive of Wide Speed Range)

  • 이정철;이홍균;정택기;정동화
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.183-186
    • /
    • 2002
  • The paper is proposed intantaneous torque control of IPMSM for drive of wide speed range. The control scheme is based on the mathematical model of the motor and is applicable to the constant torque and field weakening operations The scheme allows the motor to be driven with maximum torque per ampere (MTPA) characteristic below base speed and it maintains the maximum voltage limit of the motor wide field weakening and the motor current limit under all conditions of operation accurately. For each control mode. a condition that determines the optimal d-axis current $i_d$ for maximum torque operation is derived. The proposed control algorithm is applied to PMSM drive system for drive of wide speed range, the operating characteristics controlled by maximum torque control are examined in detail by simulation.

  • PDF

유도전동기의 순시토크제어를 위한 피드포워드적 전압지령의 해석해 (Analytical Solution for Instantaneous Torque Control of an Induction Motor)

  • 정석권;유삼상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.231-233
    • /
    • 2001
  • This paper describes an analytical solution of the voltage commands for instantaneous torque control of an I.M. The analytical solution is expressed as a simple explicit function of the instantaneous torque commands and motor speed. On the basis of the derived analytical solution, the maximum torque change rate of an I.M with a limited voltage-source is analyzed, and also the dynamic influence of rapid changes in motor speed on output torque derivations is investigated. The detailed results of these two analyses are approximated here in term of first-order linear differential equations, and their validities are confirmed through the demonstrative numerical simulations. This paper includes the simulation results of the instantaneous torque control with varied motor parameters for sensitivity analysis.

  • PDF

다중 HBPI 제어기를 이용한 유도전동기 드라이브의 최대토크 제어 (Maximum Torque Control of Induction Motor Drive using Multi-HBPI Controller)

  • 고재섭;최정식;정동화
    • 조명전기설비학회논문지
    • /
    • 제24권9호
    • /
    • pp.26-35
    • /
    • 2010
  • The maximum output torque developed by the machine is dependent on the allowable current rating and maximum voltage that the inverter can supply to the machine. Therefore, to use the inverter capacity fully, it is desirable to use the control scheme considering the voltage and current limit condition, which can yield the maximum torque per ampere over the entire speed range. This controller is controlled speed and current using hybrid PI(HBPI) controller and estimation of speed using ANN. Also, this paper is proposed maximum torque control of induction motor using slip angular speed and current condition at widely speed range. The performance of the proposed induction motor drive with maximum torque control using HBPI controller is verified by analysis results at dynamic operation conditions.

극호비 변화에 따른 영구자석 매입형 동기전동기의 토크 특성 해석 (Torque Characteristics Analysis of Interior Permanent Magnet Synchronous Motor According to Pole Arc Ratio)

  • 이갑재;김기찬;이종인;권중록
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권2호
    • /
    • pp.81-87
    • /
    • 2005
  • The torque characteristics of permanent magnet(PM) motor is varied according to magnet width. In this paper, the design method of magnet and magnetic circuit is proposed in order to improve the torque of Interior Permanent Magnet Synchronous Motor(IPMSM). This paper presents the effects of pole arc ratio and salient pole ratio on the torque and torque ripple in the IPMSM with concentrated winding.

영구자석 동기전동기를 위한 퍼지 제어기법 기반의 부하 토크관측기에 관한 연구 (A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor)

  • 정진우;이동명
    • 조명전기설비학회논문지
    • /
    • 제24권10호
    • /
    • pp.26-32
    • /
    • 2010
  • This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.

A New Three-Phase Current Modulation Method to Suppress the Commutation Torque Ripple of Brushless DC Motor

  • Wang, Zhiqiang;Yin, Shuai;Ma, Tiehua
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권5호
    • /
    • pp.1925-1933
    • /
    • 2017
  • The brushless DC motor's commutation torque ripple is caused by inconsistency in the rate of phase current change. Thus, a method that considers armature resistance is proposed to modulate phase current. The three-phase control strategy, which involves the "open-phase conduction, off-phase pulse width modulation, and maintained non-commutation phase" technique, is applied during commutation at full-speed segments of the motor. Changes in each phase current are analyzed theoretically by establishing mathematical model based on phase current to determine the relative difference among shutdown phase, duty, and motor operating parameters. The turn-on and turn-off phase current change rates are made to be consistent to ensure less non-commutation phase current ripple, then the torque ripple is inhibited. The simulation results show that the phase commutation current and torque ripple coefficient of the proposed method are reduced from 56.9% and 55.5% to 6.8% and 6.1%, respectively. In the experiment system, the pulsation coefficient of the motor phase current is reduced from 40.0% to 16.7% at low speed and 50.0% to 18.8% at high speed. The simulation and experimental results show that the proposed control method significantly inhibits commutation current and torque in the full section.

적응제어형 외란 관측기를 이요한 BLDC 전동기의 정밀위치제어에 대한 연구 (A Study on Adaptive Load Torque Observer for Robust Precision Position Control of BLDC Motor)

  • 고종선;윤성구
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.4-9
    • /
    • 1999
  • A new control method for precision robust position control of a brushless DC (BLDC) motor using asymptotically stable adaptive load torque observer is presented in the paper. Precision position control is obtained for the BLDC motor system approximately linearized using the field-orientation method Recently, many of these drive systems use BLDC motors to avoid backlashe. However, the disadvantages of the motor are high cost and complex control because of nonlinear characteristics. Also, the load torque disturbance directly affects the motor shaft. The application of the load torque observer is published in [1] using fixed gain. However, the motor flux linkage is not exactly known for a load torque observer. There is the problem of uncertainty to obtain very high precision position control. Therefore a model reference adaptive observer is considered to overcome the problem of unknown parameter and torque disturbance in this paper. The system stability analysis is carried out using Lyapunov stability theorem. As a result, asymptotically stable observe gain can be obtained without affecting the overall system response. The load disturbance detected by the asymptotically stable adaptive observer is compensated by feedforwarding the equivalent current which gives fast response. The experimenta results are presented in the paper.

  • PDF