Browse > Article
http://dx.doi.org/10.5207/JIEIE.2010.24.10.026

A Study on the Load Torque Observer based on Fuzzy Logic Control for a PM Synchronous Motor  

Jung, Jin-Woo (동국대(서울캠퍼스) 전자전기공학부)
Lee, Dong-Myung (홍익대 전자전기공학부)
Publication Information
Journal of the Korean Institute of Illuminating and Electrical Installation Engineers / v.24, no.10, 2010 , pp. 26-32 More about this Journal
Abstract
This paper proposes a new load torque observer based on the Takagi-Sugeno fuzzy method for a permanent magnet synchronous motor(PMSM). A Linear Matrix Inequality(LMI) parameterization of the fuzzy observer gain is given, and the LMI conditions are derived for the existence of the fuzzy load torque observer guaranteeing $\alpha$-stability and linear quadratic performance. In this paper, a nonlinear speed controller is employed to validate the performance of the proposed fuzzy load torque observer, and various simulation results are presented under motor parameter and load torque variations.
Keywords
Fuzzy Load Torque Observer; Permanent Magnet Synchronous Motor; Speed Control;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. B. Lee and F. Blaabjerg, “Robust and stable disturbance observer of servo system for low-speed operation,” IEEE Trans. Industry Applications, Vol. 43, no. 3, pp. 627-635, 2007.   DOI
2 K. H. Kim and M. J. Youn, “A nonlinear speed control for a PM synchronous motor using a simple disturbance estimation technique,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 524-535, 2002.   DOI
3 Y. Zhang, C. M. Akujuobi, W. H. Ali, C. L. Tolliver, and L. S. Shieh, “Load disturbance resistance speed controller design for PMSM,” IEEE Trans. Ind. Electron., Vol. 53, no. 4, pp. 1198-1208, 2006.   DOI
4 H. H. Choi, “LMI-based nonlinear fuzzy observer-controller design for uncertain MIMO nonlinear systems,” IEEE Trans. Fuzzy Systems, Vol. 15, no. 5, pp. 956-971, 2007.   DOI   ScienceOn
5 T. Tagaki and M. Sugeno, “Fuzzy identification of systems and its applications to modeling and control,” IEEE Trans. Syst., Man, Cybern., Vol. 15, no. 1, pp. 116-132, 1985.
6 J. J. E. Slotine and W. Li, “Applied Nonlinear Control,” Prentice-Hall, Englewood Cliffs, NJ, 1991.
7 S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan, “Linear Matrix Inequalities in System and Control Theory,” SIAM, Philadelphia, PA, 1994.