• 제목/요약/키워드: Toppling-failure

검색결과 31건 처리시간 0.032초

Gross dynamic failure of toppling block structures

  • Wilson, James F.
    • Structural Engineering and Mechanics
    • /
    • 제8권5호
    • /
    • pp.491-504
    • /
    • 1999
  • The initiation of toppling is explored for a uniform stack of blocks that rotates slowly about its mid-base. As the stack passes through its vertical position ($\theta$=0), it is in free-fall rotation, and a critical inclination angle ${\theta}_c$ is reached at which the toppling stack "fails" or begins to crack or separate. For tall stacks (high aspect ratios), two modes of failure are hypothesized, for which the dynamic failure analyses are shown to correlate with experimental results. These block failure modes are similar to those observed for tall, toppling masonry structures with weak binding material between their brick or stone blocks.

절리 간격이 암반 사면의 안정성에 미치는 영향 (Influence of Joint Spacing to Rock Slope Stability)

  • 윤운상;권혁신;김정환
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2000년도 가을 학술발표회 논문집
    • /
    • pp.511-518
    • /
    • 2000
  • Characteristics of joint orientation, length, spacing and their distribution are very important factors for slope stability, Especially, the effect of joint spacing is an essential factor of slope stability. This study is to analyze the effect of joint spacing in cases of sliding and toppling, which is a typical failure mode. Joint spacing can divided into vertical spacing(spacing) and horizontal spacing(gap). And then, the spacing/length ratio of joint directly affect rock slope failure. When the ratio is below 0.05, the possibility of failure is rapidly increased. In case of toppling, the possibility of failure depends on the ratio of spacing to height of slope ratio slope. As the ratio decreases, the possibility of toppling failure increased. The critical ratio of spacing to height of slope is determined by the dip angle of the slope and the orientation of joint sets.

  • PDF

암반사면의 전도파괴에 대한 안정해석 (Stability Analysis of Toppling Failure in Rock Slopes)

  • 이명재;이인모
    • 한국지반공학회지:지반
    • /
    • 제14권2호
    • /
    • pp.55-66
    • /
    • 1998
  • 본 논문의 목적은 불연속면의 공학적 특성, 사면형상과 하중조건 등을 고려한 암반사면 전도 파괴에 대한 안정해석방법을 개발하고 적용하는테 있다. 암반사면의 전도파괴에 대한 안정은 경사각 $\alpha_s$ 와 H/t비에 주된 영향을 받는다. 설계적용을 위하여 매개변수에 따른 My띠와 $\alpha$서 함수로 표현되는 암반사면 전도파괴에 대한 안정도표를 작성하였다. 안정도표에서 $\alpha_s$와 Hy띠가 작아질수록 안정성이 증가하는 경향을 보인다. 안정도표에서 안정영역은 간극수압변화에 따라 가장 크게 감소한다. 파괴영역의 변화는 지진력과 단계각에 가장 민감하다.

  • PDF

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone

  • Azarafza, Mohammad;Bonab, Masoud Hajialilue;Akgun, Haluk
    • Geomechanics and Engineering
    • /
    • 제27권5호
    • /
    • pp.481-495
    • /
    • 2021
  • This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.

절토사면의 전도파괴에 대한 안정성 평가 및 수치해석적 고찰 (A Study on the Stability Evaluation and Numerical Simulation of Toppling Failure on a Cut-Slope)

  • 최지용;김승현;구호본
    • 지질공학
    • /
    • 제20권1호
    • /
    • pp.13-23
    • /
    • 2010
  • 암반사면의 전도파괴는 암반이나 토체가 기존 파괴면을 따라 미끄러지는 다른 파괴형태와는 달리 암주 혹은 암블록의 회전을 동반하는 파괴형태로 정의된다. 이는 사면방향에 대해 역방향으로 발달된 불연속면이 존재하는 구역에서 주로 발생하며, 불연속면의 지질학적 특성뿐 아니라 기하학적인 특성도 사면의 안정성을 판단하는 중요한 요소로 작용된다. 본 연구에서는 역방향 불연속면이 발달된 절토사면에 대해 안정성을 평가하였다. 일반적으로 암반의 파괴거동은 불연속체 특성을 가지고 있으나 최근 연속체 해석에서 불연속면을 모사하는 수치해석방법들이 많이 논의되고 있다. 본 연구에서는 연속체 해석인 유한요소해석에 불연속면을 이질적인 경계특성에 적용되는 계면요소를 이용하여 모사함으로써 불연속면이 고려된 사면의 거동특성을 파악하였다.

암반 사면의 복합 파괴 메커니즘 규명 (Complex failure mechanism of rock slopes)

  • 윤운상;정의진;박성욱;최재원
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 추계 학술발표회
    • /
    • pp.268-273
    • /
    • 2006
  • Slope failures can be occurred by complex mechanism. In this cases, failures shows characteristics of complex failure mechanism during progressive mass movements. A case is a merged large slide with two sliding events triggered by slip on fault plane. Another case shows extension of failure area by sliding or subsidence at backyards of toppling areas. Generally, areas of progressive failures have wider than them of simple events.

  • PDF

보령댐 절취사면의 암반평가 및 평사투영법에 의한 사면안정성 연구 (Rock mass classification and slope stability using the stronet analysis technique in Boryung Dam site)

  • ;한공창;정소걸;신희순
    • 터널과지하공간
    • /
    • 제5권4호
    • /
    • pp.308-317
    • /
    • 1995
  • The stability study on the rock slope where have produced failures in Boryung dam site was evaluated using the streonet analysis techniques. SMR(Slope Mass Rating) approach which is suitable for preliminary assessment of slope stability in rock was also carried out for rating rock mass. The 3-4 major discontinuity sets are distributed and all type of failure(plane, wedge and toppling failure) are presented in this slope face. The dip of slope must be lowered to friction angle(26degree), otherwise the possibility of plane and toppling faiue will always exist in this slope.

  • PDF

Case Study of Slope Investigation on the Cretaceous Sedimentary Rocks Using the Geological Cross-Sections

  • Ihm, Myeong-Hyeok;Kim, Woo-Seok;Kwon, Oil
    • 지질공학
    • /
    • 제31권4호
    • /
    • pp.463-478
    • /
    • 2021
  • The subjects of the study are the sedimentary rock slope of the Mesozoic Gyeongsang Supergroup, which has a high risk of failure. The orientation of the slope-face represents a variety of changing characteristics. The rocks of the slope shall be sandstone, siltstone and dacite, and discontinuities shall develop beddings, shear joints, extension joints, and dacite dyke boundary planes. The type and scale of failure varies depending on the type of rock and the strike/dip of the discontinuities, but the toppling failure prevails. Based on the face-mapping data, SMR, physical and mechanical testing of rocks, analysis and review of the stereonet projections and the critical equilibrium analysis, all four representative sections required a countermeasure method because the acceptable safety factor during dry and rainy seasons were far below Fs = 1.5 and Fs = 1.2. After applying the countermeasure method, both the dry and wet conditions of the slope exceeded the allowable safety factor. In particular, the face-mapping data of the slope-face, the geological cross-sections of several representative sections perpendicular to the slope-face, and the critical equilibrium analysis and the presentation of countermeasure methods that have been reviewed based on them are expected to be reasonable tools for the slope stability. In addition, it will be possible to use it as basic data for performance evaluation for slope maintenance.

Reliability-based Optimization for Rock Slopes

  • 이명재
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 1998년도 터널.암반역학위원회 박사학위 논문집
    • /
    • pp.3-34
    • /
    • 1998
  • The stability condition of rock slopes is greatly affected by the geometry and strength parameters of discontinuities in the rock masses. Rock slopes Involving movement of rock blocks on discontinuities are failed by one or combination of the three basic failure modes-plane, wedge, and toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the rock strength properties, and the loading conditions are always subject to a degree of uncertainty. Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the decision on stabilization measures with favorable cost conditions. This study was performed to provide a new numerical model of the deterministic analysis, reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity analysis was carried out to verify proposed method and developed program; the parameters needed for sensitivity analysis are design variables, the variability of discontinuity properties (orientation and strength of discontinuities), the loading conditions, and rock slope geometry properties. The design variables to be optimized by the reliability-based optimization include the cutting angle, the support pressure, and the slope direction. The variability in orientations and friction angle of discontinuities, which can not be considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The stability of rock slopes considering three basic failure modes is more influenced by the selection of slope direction than any other design variables. When either plane or wedge failure is dominant, the support system is more useful than the excavation as a stabilization method. However, the excavation method is more suitable when toppling failure is dominant. The case study shows that the developed reliability-based optimization model can reasonably assess the stability of rock slopes and reduce the construction cost.

  • PDF