1. Reliability—based Optimization for Rock Slopes

D ‘97.2 Ol YA BAH/ EEAXIH o






Reliability-based Optimization for Rock Slopes

Myung-Jae Lee (President, DODAM Engineering Co., Ltd.)

ABSTRACT

The stability condition of rock slopes is greatly affected by the geometry and strength parameters of
discontinuities in the rock masses. Rock slopes involving movement of rock blocks on
discontinuities are failed by one or combination of the three basic failure modes — plane, wedge, and
toppling. In rock mechanics, practically all the parameters such as the joint set characteristics, the
rock strength properties, and the loading conditions are always subject to a degree of uncertainty.
Therefore, a reasonable assessment of the rock slope stability has to include the excavation of the
multi-failure modes, the consideration of uncertainties of discontinuity characteristics, and the
decision on stabilization measures with favorable cost conditions.

This study was performed to provide a new numerical model of the deterministic analysis,
reliability analysis, and reliability-based optimization for rock slope stability. The sensitivity
analysis was carried out to verify proposed method and developed program; the parameters needed
for sensitivity analysis are design variables, the variability of discontinuity properties (orientation
and strength of discontinuities), the loading conditions, and rock slope geometry properties. The
design variables to be optimized by the reliability-based optirhization include the cutting angle, the
support pressure, and the slope direction.

The variability in orientations and friction angle of discontinuities, which can not be
considered in the deterministic analysis, has a greatly influenced on the rock slope stability. The
stability of rock slopes considering three basic failure modes is more influenced by the selection of
slope direction than any other design variables. When either plane or wedge failure is dominant, the
support system is more useful than the excavation as a stabilization method. However, the
excavation method is more suitable when toppling failure is dominant. The case study shows that

the developed reliability-based optimization model can reasonably assess the stability of rock slopes

and reduce the construction cost.



1. INTRODUCTION

The stability condition of rock slopes is mostly affected by the geometry and strength parameters of
discontinuities in rock masses. Rock slopes involving movement of rock blocks on discontinuities
tend to fail through a combination of three basic failure modes - plane, wedge, and toppling. In rock
mechanics, practically all parameters, such as joint set characteristics, rock strength properties, and
loading conditions, are subject to a degree of uncertainty. Therefore, a reasonable assessment of
rock slope stability should include the evaluation of the multi-failure modes, the consideration of
uncertainties of discontinuity characteristics, and the decision on stabilization measures with
favorable cost conditions.

Engineering design requires risk assessment and a regard for cost constraints in order to
balance safety with economy before conclusive decisions are made. It is now generally recognized
that geotechnical engineering problems are nondeterministic and, consequently, that optimum
design must cope with uncertainties. Clearly the proper tool for the assessment and analysis of such
uncertainties requires the concepts of reliability. Therefore, it is not an overstatement to claim that
the combination of reliability-based design procedures and optimization techniques are the only
means of providing a.practical optimum design solution.

Frangopol(1985) presented an overview of concepts and methods used in reliability-based
optimization which obtained the proper performance criteria of a structure requiring an adequate
safety margin (i.e., sufficient small probability of failure) against the occurrence of different limit
states. In the case of rock engineering, many papers on the reliability analysis of rock slopes have
been published (Scavia, et al., 1990; Leung and Quek, 1995). The optimization techniques of rock
slopes, however, have received limited attention.

This study aims to formulate a new numerical model for the reliability-based optimization of
rock slopes that is capable of evaluating the optimum values of slope direction, cutting angle, and
support pressure that corresponds to the three basic failure modes. This model may well improve

the quality of rock slope stability analysis and reduce construction costs.



2. STABILITY ANALYSIS OF ROCK SLOPES

2.1 Failure modes of rock slopes

The analysis of rock slope stability is fundamentally a two-part process: the kinematic analysis and
the stability analysis. The first step is to analyze the discontinuities of a rock mass to determine
whether the orientation of the discontinuities could result in instability of the slope. Once it has
been assessed that a kinematically possible failure mode exists, the second step requires a limit

equilibrium stability analysis to compare the resisting forces with the forces causing failure.

2.2 Plane and wedge failures

The method of vector analysis provides relatively simple formulations for all the quantities related
to block morphology including the volume of each joint block, the areas of block faces, the
positions of its vertexes, and the positions and attitudes of its faces and edges. The use of vectors
also permits kinematic and static equilibrium analysis of key blocks under various loading
conditions.

From a rock slope design perspective, the most important characteristic of a discontinuity is
its orientation, which is best defined by two parameters; dip(a) and dip direction(f). The unit

normal vector of the discontinuity plane, 0, is given as

fi = ( sinasinB, sinacosp, cosa ) 1)
(1) Kinematic analysis

Three major components of block theory are as follows (Goodman and Shi, 1985):

(1) Finiteness analysis determines whether the rock joints and excavation surfaces contribute to the
formation of an isolated rock block that is separate from the rest of the rock mass.

(2) Removability analysis determines whether the isolated block has a shape that allows the rock
block to move into the excavation without movement of any other part of the rock mass. The
steps of finiteness and removability analyses are commonly entitled kinematic analysis.

(3) Stability analysis determines whether driving forces acting on the block are sufficient to

undermine resisting forces.



(2) Stability analysis

If the kinematic analysis indicates that some removable blocks are present, the rock slope stability
for plane and wedge failures must be evaluated by a limit equilibrium analysis, which considers the
friction force and cohesion strength along the failure surface and the resultant force. Vector analysis
facilitates the analysis of block stability under gravity force, water pressure, seismic force, support
force, friction, and cohesion. '

The condition of equilibrium for a potential or real key block B, described in Figure 1, is

given as

P+ Nd -T§=0 2)

where, N, = normal reaction force of joint plane i, ¥i = unit vector normal to joint plane i, T =
resultant of the tangential frictional force, § = unit vector of sliding direction, and T = resultant

force. The resultant (T ) of all forces is given as

i=W+ U+ Fa+ Q (3)

where, W = gravity force, U = hydrostatic force, Fs = seismic force, and Q = support force.
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2.3 Stability analysis for toppling failure

Toppling failure most commonly occurs in rock masses containing a large number of slabs or
columns formed by a set of fractures that strike approximately parallel to the slope face and dip
steeply into the face. Toppling failure is characterized by significant horizontal movement at the
crest and very little movement at the toe. To accommodate this difference in movement between
the toe and crest, interlayer movement must occur. Thus, the shear strength between layers is crucial
to the stability of slopes structurally susceptible to toppling.

An analysis method of toppling failure presented by Goodman and Bray(1976) provide the
fundamentals for the stability of rock slopes susceptible to toppling. A numerical analysis method
for toppling analysis is developed in this study, modifying and combining the analytical method by
Goodman and Bray(1976) and the numerical method by Zanbak(1983).

(1) Kinematic Analysis

The necessary kinematic conditions for the occurrence of toppling failure can be summarized into
two parts: One being the direction of the toppling plane and the rock slope face; and the other being
the dip angle of the joint plane and rock slope face, and the friction angle of the joint plane. The
strike of the joint plane must be approximately parallel to the rock slope face. The dip of the joint
plane must extend into the rock slope face. In order for interlayer slip to occur, the normal to the
toppling plane must have a plunge less than the inclination of the slope face and less than the

friction angle of the surface. The condition can be formulated as (Goodman and Bray, 1976)

(90°-a,) < (o, -64) | 4
where, o, = dip angle of discontinuity A,

¢, = friction angle of discontinuity A,

and a, = cutting angle of rock slope.



(2) Stability Analysis

H : slope height

q : uniformly distributed stabilizing pressure

o, o,,: cutting angle of slope and upper slope surface
o4, 0g: dip angles of discontinuities A and B

S, : spacing of discontinuity system A

0 : step angle

Figure 2: Idealized slope generating with a postulated failure surface
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Figure 3: Forces applied to slice (1)
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Figure 2 shows a cross section of the rock slope with a system of blocks on a stepped failure surface.

Two discontinuity systems A and B with 100% persistence are assumed present in the rock mass. For

the total volume of rock blocks in the slope resting on the estimated stepped failure surface, the n

blocks are numbered in sequence starting from the toe as shown in Figure 2. For the (i)th block

shown in Figure 3, the force P(i) transferred to the (i-1)th block is calculated from the limiting

equilibrium condition. When considering the limiting equili'brium condition of a typical block (say i,

on Figure 2), the following additional forces are acting on the block :

o the weight W(i) ; .

e the shear forces T(i), T(i+1) on the sides and R(i) on the base (these forces are related to the
friction angle ¢,, at the sides, and ¢g, at the base); v

e the hydrostatic forces U(i), U,(i) at the sides and Uy(i) at the base, resulting from the water
pressure distribution;

e the seismic force F(i), which is as usual given by KxW(i), with K being the seismic coefficient ;

e the force P(i+1), transferred from the (i+1)th block, taken as normal to the side and applied at point
B;and ‘

o the force Q(i) resulting from a stabilizing pressure distribution. _

The force P(i) is assumed to be normal to the side of the (i)th block and applied at discontinuity A.

The greater value of the calculated Pi), the toppling resistance of the (i)th block, and P(i), the

shear resistance of the (i)th block, will be the P(i) force exerted on the (i-1)th column. The overall

stability of the toppling slope is defined by the P, force exerted on the first column at the toe

(Figure 2). The slope is considered unstable if the resultant P, force applied on the toe column is

greater than zero. When P, > 0, then the magnitude of P, is the retaining force in the base plane

obtained from the limit equilibrium condition.
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3. RELIABILITY-BASED ANALYSIS
3.1 General

The failures of rock masses are mainly controlled by discontinuities in the rock mass. Therefore, it
is important to know features of discontinuities. These features are classified into three groups: (1)
orientations of discontinuities; (2) strength properties of discontinuities; and (3) size and spacing of
discontinuities.

In this study, the reliability-based analysis of rock slopes is accomplished by the Monte Carlo
simulation based on independently generated random numbers. Some basic features and
assumptions are given below:
¢ The kinematic analysis and the stability analysis for plane and wedge failures of rock slopes are

accomplished by block theory.

e The kinematic analysis and the stability analysis for toppling failures of rock slopes are performed
by a newly developed 2-D numerical method.

o The orientations of discontinuities are random variables assumed to be Fisher’s distribution
assessed by the clustering technique.

e The friction angles of discontinuities are random variables assumed to be normal distribution.

e This study does not consider any time related aspects such as creep or weathering.

e Correlations between parameters are neglected.

3.2 Evaluation of failure probability

In probabilistic reliability analysis, the safety margin (SM) of a rock slope is defined as the
difference between the force resisting the sliding down the plane (R) and the force causing the

sliding to occur (L). Failure is defined by the event SM<0. The probability of this event is:

(1) for plane and wedge failures,
P;=P(SM =(R-L) <0); (5)

(2) and for toppling failure,
P,=P(SM=-P,<0) ()

where P, is the probability of failure.
- 14 -



By generating numerous combinational sets of random variables, one can estimate the relative

chance of each failure mode, Py, Py, and Py, and finally P:
Py= —, Pw=—, Pr= —, Pr=— @)

where, P, = probability of plane failure, Py, = probability of wedge failure, Py = probability of
toppling failure, P,= probability of overall failure, N, = number of plane failure, N,, = number of
wedge failure, N, = number of toppling failure, N.= number of overall failure irrespective of failure

modes =NpUNwUNt, and N = total number of sets analyzed.
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4. RELIABILITY-BASED OPTIMIZATION

4.1 General

This study aims to formulate a new numerical model for the reliability-based optimization of rock
slopes that is capable of evaluating the optimum values of slope direction, cutting angle, and
support pressure corresponding with the three basic failure modes.. This model may well improve

the quality of rock slope stability analysis and reduce construction costs.

The essential characteristics of a reliability-based optimization problem for rock slopes are:

random variables - orientation and the friction angle of discontinuities;

deterministic parameters - cohesion and spacing of discontinuities and physical properties of

rock mass;

e design variables - dip direction and cutting angle (dip angle) of rock slopes and support

pressure;
e load conditions - gravity force, water pressure, and seismic force; and
o failure modes - plane, wedge, and toppling failure.

Some basic features and assumptions are given below:

e The orientations of discontinuities are random variables assumed to follow Fisher’s distribution
assessed by the clustering technique;

e The friction angles of discontinuities are random variables assumed to follow normal distribution;

e This study does not consider any time-related aspects such as creep or weathering; and

e Correlations between parameters are neglected.
4.2 Formulations

This study focuses on the reliability-based optimization for rock slopes to minimize constructioﬁ
costs with a prescribed overall failure probability level. It is assumed that the cost consists of three
parts: initial cost; cost of stabilization measures; and damage cost as shown in Figure 4. The initial
cost indicates the construction cost needed in preparing necessary space. The damage cost
represents the expenses needed for repairing the failed slopes. In general, the types of stabilization
measures are classified into three categories; removal of rock mass from an unstable zone,
reinforcement of slope using rock bolts or anchors, and protection measures through placement of
fences or nets. Two methods out of the above mentioned are considered in the feasibility study in

regard to cost; the rock removal and the slope reinforcement.
- 16 -
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Figure 4: Definition of initial cost, excavation cost, and cost of rock bolt
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The reliability-based optimization for rock slopes is a constrained minimization specified as
one of the following forms:

e Objective function is
Min : TC({D})=C,+C,+C,+C,xP; _ ®)

where, TC = total cost per unit length of a slope (W/m), {D} = design variables = {a,, B, q}, &, =
cutting angle of rock slopes, ; = dip direction of the rock slope, q = stabilized 1oad uniformly
distributed (ton/m®), C; = initial cost per unit length (W/m), C,, = excavation cost per unit length
(W/m) = ¢, x (H*/2tana,), C,, = cost of rock bolts per unit length (W/m) = ¢, x (Hg/sina,), C, =
damage cost per unit length (W/m), P, = the overall probability of failure of the rock slope, c.. =
excavation cost per unit volume (W/m?), ¢,, = cost of rock bolt per unit ton (W/ton) , and 1$ = 1500
W.

e Constraint is defined as

P.({D}) <P/ &)
where, P, = the overall probability of failure of the rock slope, and PfO = the prescribed allowable
failure probability of the rock slope. Both the total cost and the constraint of the failure probability

are usually implicit functions of the design variables {D}. Total cost is calculated by Eqn. 8.

Constraint conditions are the overall failure criterion represented by Eqn. 9.
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5. APPLICATION OF THE PROPOSED MODEL
5.1 General

The proposed model for the reliability-based optimization of rock slopes ‘was applied to a
hypothetical site. This site is assumed to have a system of four discontinuity sets as shown in Table 1.
The four discontinuity sets are numbered 1, 2, 3, and 4. Their mean values of dips and dip
directions are shown in Table 1. Fisher’s constants are assumed to be 100. The friction angles of the
discontinuities have a mean value of 30° with a standard deviation of 3°. The spacing of
discontinuities is considered to be 3m. The cohesion of the discontinuities is taken to be zero.

The design variables to be optimized are either two or three: the cutting angle of the rock slope; the
support pressure; and optionally, the dip direction of the rock slope. The deterministic parameters
for the study are: the height of the rock slope, H = 30m; the unit weight of rock mass, y = 2.5t/m’;
and the angle of upper slope surface, o, = 0. First of all, the probability‘ of failure of the example
rock slope is obtained for the full range of the design variables: the dip direction of the rock slope, B
ranging from 0° to 360°; the cutting angle of the rock slope, o ranging from 30° to 90°; and the

support pressure, q ranging from 0 to 10t/m’.

TABLE 1
SUMMARY OF INPUT PARAMETERS

_ _ Friction
Orientation - S
Angle
‘ (m)
E(a) | EB) | K | E(9) | o(9)
1] 35 [ 20° | 100 | 30° 3° 3
2 | 15° | 125° | 100 | 30° 3° 3
3| 60° | 220° | 100 | 30° 3° 3
4 | 75° | 300° 1 100 | 30° 3° 3

For the optimization of the rock slope, the following assumptions are made. The initial cost is

neglected. The excavation cost is assumed to be WBVO,OOO per cubic meter. And, the cost of rock
bolts is assumed to be W 10,000 per ton. In the case where damage costs are included, they are

assumed to be W100,000,000 per unit length. The sensitivity of design parameters on the
-19 -



calculated results of the reliability-based optimization is studied using the program ‘RBO-RSSA’
developed in this study. The parameters analyzed in the sensitivity analysis include orientation and

strength of discontinuities, loading conditions, and spacing of discontinuities, etc.

5.2 Results and Discussion

The stability of rock slope including plane, wedge, and toppling failure modes was found to
be more influenced by the selection of dip direction of cutting rock face than any other design
variables as shown Figure 4. The toppling failure is more sensitive to the variation of cutting angle
of rock slope than any other failure modes as shown Figure 5. Figure 6 shows that both of plane and
wedge failures are more sensitive to the variation of support pressure than toppling failure is.

Figure 7 shows that the failure probability is highly dependent on the Fisher’s
constant(dispersion of discontinuity orientation). Figure 8 also shows that the increase of coefficient
of variation of friction angle of discontinuities gives an increase of failure probability. It means that
variability in orientations and friction angles of discontinuity set can lead to failures which would
not be predicted by just performing deterministic analysis using mean orientations and mean
friction angles. _

The minimum cost and optimum design variables are obtained by using the constraint
condition of prescribed allowable failure probability. The two dimensional design space shown in
Figure 10 and 11 has three P; constraint curves; P’ = 0.001, 0.01, and 0.1. The design space inside
the P, constraint boundaries denoted by hatched lines is the feasible zone, and all the designs
located in this region are acceptable. The minimum total cost must be decided within the feasible
zone defined by the iso-curve of the specified allowable failure probability. Because the iso-curve
of the prescribed failure probability is not a smooth curve, the optimum value which satisfies the
failure probability constraints can be obtained using the DP algorithm sorting technique. Figure 10

shows that the optimum cost is 12,800,000 W/m, and the optimum design variables are a cutting

angle of 55° and a support pressure of 9t/m’ within an allowable failure probability 0.01 (1%).
When the toppling failure mode controls (as in the case when = 20°), the optimum cutting angle is
distributed in the range between 35° and 60° as shown in Figure 10. On the other hand, when the dip
direction of the rock slope is equal to 210°, either of plane or wedge failure is dominant, and the
optimum cutting angle is distributed in the range between 70° and 90° as shown in Figure 11. This
indicates that the appropriate stabilization measure for toppling failure is rock removal by

excavation rather than the support system.
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Figure 5: P, versus B, (0, =70° and q = 0 t/m?)
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Figure 6: P; versus o, (B; =20° and q = 0 t/m?)
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Figure 7: P, versus q (B;=20° and o, =70°)
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Figure 8: P, versus a; with the variation of K
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Figure 10: Sensitivity of Optimum Solution to the Change of the Prescribed Failure Probability
(when B, =20°)

- 26—



10

l T —— I T I
g .
Feasible
R 8 — Zone
N
<E 7 | _ _ 6.266 Won
S % : Optimum Design B
o 6 Varables . i
?3 S~ ]
@ Iso-Curves
% 4 of Pf
& 3 ‘4
N
2 1.2e6 Wo 2
1 9e5 Won N
0.001 0.01 0.1
0
] ] I | 1 T I T
4 5 5 60 6 70 75 8 8 90

Figure 11: Sensitivity of Optimum Solution to the Change of the Prescribed Failure Probability
(when B,=210°)

_927 -



The sensitivity analysis was performed for the reliability-based optimization of the example
rock slope. The parameters studied are Fisher’s constant of discontinuity orientation, the coefficient
of variation and the mean value of the friction angles of discontinuities, cohesion of discontinuities,
H/t ratio, and loading conditions. The optimum cutting angle of the rock slope decreases with the
increase of variability in the orientations and friction angles (decrease of the Fisher’s constant and
increase of the coefficient of variation of friction angle) of discontinuities as shown in Table 2. This
means that the deterministic optimization methodology may at times give erroneous results. In
general, the optimum cutting angle increases, i.c. the excavation quantity decreases, as either the
friction angle or the cohesion of discontinuities increases and the H/t ratio decreases as shown in
Table 3-5. The increase of porewater pressure and seismic force would also lead to a decrease of the
optimum cutting aﬁgle and, in turn, an increase of the minimum cost. The optimum cost was the

most sensitive to the change of the dip direction of the rock slope.
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TABLE 2
RESULTS OF SENSITIVITY ANALYSIS (B=20°)

Prescribed Formulation A Formulation B
Analysis Failure Minimum | Optimum Design | Minimum | Optimum Design
- Cost ; Cost :
Probabili Variables Variables
Cases Y1 1 TC'
1]
P wonm) | o) | qemd | Wonm) | o) | G
Deterministic .
Analysis - 9.27x10° | 65 9 9.27x10° 65 9
5 0.001 1.98x10’ 35 1 1.98x10’ 35 1
“ 0.01 1.66x107 40 1 1.69x107 40 ]
0.1 1.09%10’ 60 9 1.43x10 55 10
0.001 1.66x10" | 40 1 1.66x107 40 1
Fisher’s k=
0.01 1.28x10 55 9 1.36x10’ 55 9
Constant 100
0.1 1.13x10" | 60 10 1.36x107 55 9
y 0.001 1.44x10" | 45 2 1.44x107 45 2
50; 0.01 128x107 | 55 9 1.34x10" | 55 10
0.1 1.13x10 | 60 10 1.34x10" 55 10
o 0.001 1.66x10" | 40 1 1.66x107 40 1
_(()d? 0.01 1.28x10’ 55 9 1.36x107 55 9
' 0.1 1.13x107 | 60 10 1.36x10 55 9
cov
; 0®) 0.001 2.29x10" 35 7 2.29x10" 35 7
(o)
i ;5 0.01 1.94x10" | 40 7 2.01x10 40 7
riction ={.
Anl 0.1 1.48x107 | 45 3 1.93x10 40 3
gle
o 0.001 2.94x10" | 30 10 2.94x10’ 30 10
542 0.01 2.58x10° | 30 4 2.63x10" 30 4
' 0.1 1.70x10" | 40 2 2.30x10’ 35 5

- 29 -




TABLE 3

RESULTS OF SENSITIVITY ANALYSIS (B, = 20°, P°; = 0.001)

Formulation A

Formulation B

Optimum Design

Analysis Mmnimum | Optimum Design | Minimum
Conditi Cost Variables Cost Variables Remarks
ondition o : o
Wonim) | @(®) | 4G | Wonm) | () | qCm)
— 7 7
$=25° | 1.70x10" | 40 2 | 1L71x10" | 40 i
Fricti =
N R o I R I R I T
Angle H/t=10
$=35° | 1.28x10" | 55 9 | 1.28x10" | 55 9
C=0vm® | 1.66x10" | 40 1| 1.66x10" | 40 1| ¢=30°
U=0
Cohesion | C=0.5um | 1.61x107 | 40 0 | 161xi0" | 40 0 K=0
C=1th? | 1.61x10" | 40 0 | 161x10" | 40 o |HA=I0
U=0 1.66x107 | 40 1| 1.66x10" | 40 1| ¢=30°
Porewater ; , C=0vm’
U=05 | 1.98x10" | 40 8 | 1.98x10" | 40 8 K=0
Pressure H/t=10
U=1.0 - . - - - - t=
=0 1.66x10" | 40 1| 1.66x107 | 40 1| ¢=30°
Seismic C=0 thn?
K=0.1 | 1.70x10" | 40 | 2 | 1.70x10" | 40 2 U0
Force ' H/t =10
K=02 | 1.70x10° | 40 2 | 170x10" | 40 2 t=
HA=5 | 1.13x10" | 60 | 10 |1.14x107 | 60 | 10 4=30°
HA ‘ - 2
We=lo | 166x10° | 40 | 1 |166x107| 40 | 1 | OO
Ratio K=0
HA=20 | 1.66x10" | 40 1| 1.66x10" | 40 1
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TABLE 4
RESULTS OF SENSITIVITY ANALYSIS (B, = 20°, P°,= 0.01)

Formulation A

Formulation B

‘Analysis Minimum | Optimum Design | Minimum { Optimum Design
. Cost Variables Cost Variables Remarks
Condition ™ 1o3
Wonim) | @) | 96 | wonm) | @ () | qm)
. o 7 7
$=25 1.66x10 40 1 1.71x107 | 40 L
Fricti =
neton 4 ae300 | 1.28x107 | 55 o | 136x10" | 55 9 [é:o
Angle -
$=35° | 1.09x107 | 60 o |1isx10'| 60 | 10 |VEW
C=0vm® | 1.28x10" | S5 9 1.36x107 | 55 9 6=30°
U=0
Cohesion | C=0.5vm? { 128x107 | 55 9 1.36x107 | 55 9 K=0
C=lum® | 1.09x10" | 60 9 | 136x10"| 55 jo | He=10
U=0 1.28x10" | 55 9 1.36x10" | 55 9 6=30°
Porewater ; C=0t/m*
U=0.5 1.89x10 40 6 1.95x10" | 40 6 K=0
Pressure Hit =10
U=1.0 234x10" | 30 0 |241x10"| 30 0 =
K=0 1.28x10" | 55 9 1.36x107 | 55 9 4=30°
Seismic ; - C=0 thr?
K=0.1 1.66x10 40 I 1.70x10" | 40 2 U=0
Force H/t =10
K=0.2 1.70x10" | 40 2 1.70x107 | 40 2 t=
H/t=5 9.61x107 | 65 10 | 1.04x10" | 65 10| 4300
HA - 2
Hit=10 | 128x10" | 55 9 | 136x10" | 55 9 CU='(/)'“
Ratio K=0
H/t=20 1.66x10" | 40 1| 166x10" | 40 1
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TABLE 5
" RESULTS OF SENSITIVITY ANALYSIS (B, = 20°, P°,=0.1)

Formulation A Formulation B
Analysis Minimum | Optimum Design | Minimum | Optimum Design
Conditi Cost Variables Cost Variables
onaition TC' -IC’
Wonrm) | @) | 46 | wonmy | @) | g
$=25° 1.44x10" | 45 2 | 171x10" | 40 2 | c=oum
Fricti =
TR ges0e | askaor | 60 | 10 1360’ | ss | 9 | T
Angle HA=10
$=35° 8.11x10" | 70 10 | 1.09x10" | 65 10
C=0vm® | 1.13x10° | 60 10 | 1.36x10" | 55 9 $=30°
- U=0
Cohesion | C=0.5um? | 1.13x107 | 60 10 | 136x10" | 55 9 =0
C=1w® | 1.09x10" | 60 9 |136x107 | 55 1o | HA=10
U=0 1.13x10° | 60 10 | 1.36x10" | 55 9 $=30°
Porewater C=0t'r?
U=0.5 1.13x107 | 60 10 | 1.57x10" | 55 10 K=0
Pressure H/=10
U=10 | 1.93x10" | 35 0 |240x107 | 35 ! t=
K=0 1.13x10° | 60 10 | 136x10" | 55 9 $=30°
Seismic : C=0 i’
K=0.1 1.44x10" | 45 2 | 170x10" | 40 2 U=0
Force . H/t=10
K=0.2 1.44x10" | 45 2 | 1.70x10° | 40 2 t=
HA=5 7.79x107 | 70 9 | 1.04x10" | 65 10| 4=30°
HA =0 v
Hi=10 | 11310 | 60 | 10 | 13607 | 55 | 9 |C0T
Ratio K=0
H/=20 1.39x10" | 45 1 | 160x10" | 45 1
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6. CONCLUSIONS

In this paper, a methodology for the reliability-based! eptimization of rock slopes was proposed, and
a sensitivity analysis was performed to figure out the mest influencing design parameters and the
most cost-effective stabilization measute: The ratio of the optimum excavation cost to the optimum
total cost for plane and wedge failure is smaller than that of toppling failure. Therefore, when either
plane or wedge failure is dominant, the support system is more effective than excavation as a
stabilization method, although the rock removal by excavation is more suitable when toppling
failure is dominant.

The optimum cutting angle of the rock slope decreases with an increase of variability in the
orientations and friction angles of discontinuities. It means that the deterministic optimization
approach may at times give erroneous results. The optimum cost is the most sensitive to the change
of the dip direction of rock slopes. Engineering design requires risk assessment and a regard to cost
constraints in order to balance safety with economy before conclusive decisions are taken. The new
numerical model of the reliability-based optimization for rock slopes proposed in this paper can
evaluate the multi-failures modes, consider the uncertainty and variability of discontinuities in rock
masses, and decide upon stabilization measures with the most favorable cost conditions. Therefore,
the reliability-based optimization model may well improve the quality of rock slope stability

analysis and reduce construction costs.
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