Browse > Article
http://dx.doi.org/10.12989/gae.2021.27.5.481

Numerical analysis and stability assessment of complex secondary toppling failures: A case study for the south pars special zone  

Azarafza, Mohammad (Department of Civil Engineering, University of Tabriz)
Bonab, Masoud Hajialilue (Department of Civil Engineering, University of Tabriz)
Akgun, Haluk (Geotechnology Unit, Department of Geological Engineering, Middle East Technical University (METU))
Publication Information
Geomechanics and Engineering / v.27, no.5, 2021 , pp. 481-495 More about this Journal
Abstract
This article assesses and estimates the progressive failure mechanism of complex pit-rest secondary toppling of slopes that are located within the vicinity of the Gas Flare Site of Refinery No. 4 in South Pars Special Zone (SPSZ), southwest Iran. The finite element numerical procedure based on the Shear Strength Reduction (SSR) technique has been employed for the stability analysis. In this regard, several step modelling stages that were conducted to evaluate the slope stability status revealed that the main instability was situated on the left-hand side (western) slope in the Flare Site. The toppling was related to the rock column-overburden system in relation to the overburden pressure on the rock columns which led to the progressive instability of the slope. This load transfer from the overburden has most probably led to the separation of the rock column and to its rotation downstream of the slope in the form of a complex pit-rest secondary toppling. According to the numerical modelling, it was determined that the Strength Reduction Factor (SRF) decreased substantially from 5.68 to less than 0.320 upon progressive failure. The estimated shear and normal stresses in the block columns ranged from 1.74 MPa to 8.46 MPa, and from 1.47 MPa to 16.8 MPa, respectively. In addition, the normal and shear displacements in the block columns ranged from 0.00609 m to 0.173 m and from 0.0109 m to 0.793 m, respectively.
Keywords
finite element method; Iran; rock slope stability; secondary toppling;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alejano, L.R., Carranza-Torres, C., Giani, G.P. and Arzua, J. (2015), "Study of the stability against toppling of rock blocks with rounded edges based on analytical and experimental approaches", Eng. Geol., 195, 172-184. https://doi.org/10.1016/j.enggeo.2015.05.030.   DOI
2 Amini, M., Ardestani, A. and Khosravi, M.H. (2017), "Stability analysis of slide-toe-toppling failure", Eng. Geol., 228, 82-96.   DOI
3 Amini, M., Majdi, A. and Veshadi, M.A. (2012), "Stability analysis of rock slopes against block flexure toppling failure", Rock Mech. Rock Eng., 45(4), 519-532. https://doi.org/10.1007/s00603-012-0220-7.   DOI
4 ASTM D6473 (2015), Standard Test Method for Specific Gravity and Absorption of Rock for Erosion Control, ASTM International, West Conshohocken, PA, USA.
5 Aydan, O. and Kawamoto, T. (1992), "The stability of slopes and underground openings against flexural toppling and their stabilisation", Rock Mech. Rock Eng., 25(3), 143-165. https://doi.org/10.1007/BF01019709.   DOI
6 Azarafza, M., Asghari-Kaljahi, E., Ghazifard, A. and Akgun, H. (2021), "Application of fuzzy expert decision-making system for rock slope block-toppling modeling and assessment: a case study", Model. Earth Syst. Environ., 7, 159-168. https://doi.org/10.1007/s40808-020-00877-9.   DOI
7 de-Freitas, M.H. and Watters, R.J. (1973), "Some field examples of toppling failure", Geotechnique, 23, 495-514. https://doi.org/10.1680/geot.1973.23.4.495.   DOI
8 Liu, F. (2020), "Stability Analysis of Geotechnical Slope Based on Strength Reduction Method", Geotech. Geol. Eng., 38, 3653-3665. https://doi.org/10.1007/s10706-020-01243-3.   DOI
9 Ernst, W.G. (2006), "Preservation/exhumation of ultrahigh-pressure subduction complexes", Lithos., 92(3-4), 321-335. https://doi.org/10.1016/j.lithos.2006.03.049.   DOI
10 Lin, S., Su, Z., Li, M. and Shao, L. (2020), "Slope stability analysis using elastic finite element stress fields", Eng. Geol., 273, 105673. https://doi.org/10.1016/j.enggeo.2020.105673.   DOI
11 Majdi, A. and Amini, M. (2011), "Analysis of geo-structural defects in flexural toppling failure", Int. J. Rock Mech. Min. Sci., 48, 175-186. https://doi.org/10.1016/j.ijrmms.2010.11.007.   DOI
12 Maji V.B. (2017), "An insight into slope stability using strength reduction technique", J. Geol. Soc. India, 89, 77-81. https://doi.org/0016-7622/2017-89-1-77.   DOI
13 Mohtarami, E., Jafari, A. and Amini, M. (2014), "Stability analysis of slopes against combined circular-toppling failure", Int. J. Rock Mech. Min. Sci., 67, 43-56. https://doi.org/10.1016/j.ijrmms.2013.12.020.   DOI
14 Muller, L. (1964), "The rock slide in the Vajont valley", Rock Mech. Eng. Geol., 2, 148-212.
15 Ardestani, A., Amini, M. and Esmaeili, K. (2021), "A two-dimensional limit equilibrium computer code for analysis of complex toppling slope failures", J. Rock Mech. Geotech. Eng., 13(1), 114-130. https://doi.org/10.1016/j.jrmge.2020.04.006.   DOI
16 Griffiths, D.V. and Lane, P.A. (1999), "Slope stability analysis by finite elements", Geotechnique, 49(3), 387-403. https://doi.org/10.1680/geot.1999.49.3.387.   DOI
17 Ashby, J. (1971), "Sliding and toppling modes of failure in models and jointed rock slopes" MSc Dissertation, Imperial College, London.
18 Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F. and Yeung, M.R. (2009), "Numerical models in discontinuous media: Review of advances for rock mechanics applications", J. Geotech. Geoenviron. Eng., 135(11), 1547-1561. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000133.   DOI
19 Chen, X., Zhang, L., Chen, L., Li, X. and Liu, D. (2019), "Slope stability analysis based on the Coupled Eulerian-Lagrangian finite element method", Bull. Eng. Geol. Environ., 78, 4451-4463. https://doi.org/10.1007/s10064-018-1413-4.   DOI
20 Cundall, P. (1971), "A computer model for simulating progressive, large scale movements in blocky rock systems", Proceedings of the International Symposium on Rock Fracture, Nancy, France, October.
21 ASTM D5607 (2002), Performing Laboratory Direct Shear Strength Tests of Rock Specimens under Constant Normal Force, ASTM International, West Conshohocken, PA, USA.
22 Rocscience (2017), RocLab software - A program for determining rock mass strength parameters; Rocscience Inc., Toronto, Canada. https://www.rocscience.com/
23 Dawson, E.M., Roth, W.H. and Drescher, A. (1999), "Slope stability analysis by strength reduction", Geotechnique, 49(6), 835-840. https://doi.org/10.1680/geot.1999.49.6.835.   DOI
24 El-Amrani Paaza, N., Lamas, F., Irigaray, C. and Chacon, J. (1998), "Engineering geological characterization of Neogene marls in the Southeastern Granada Basin (Granada, Spain)", Eng. Geol., 50(1-2), 165-175. https://doi.org/10.1016/S0013-7952(98)00008-8.   DOI
25 Erguvanli, K. and Goodman, R.E. (1972), "Applications of models to engineering geology for rock excavations", Bull. Assoc. Eng. Geol., 9.
26 Nikoobakht, S. and Azarafza, M. (2016), "Stability analysis and numerical modelling of toppling failure of discontinuous rock slope (A Case study)", J. Geotech. Geol., 12(2), 169-178.
27 Nogol-Sadat, M.A. and Almasian, A. (1993), Tectonic Map of Iran 1:1,000,000 Treatise on the Geology Of Iran, Geological Survey of Iran, Tehran, Iran.
28 Rocscience (2019), Phase2 software, (Version 8.0) - 2D finite element stress analysis program for designing underground or surface excavations and their support systems; Rocscience Inc., Toronto, Canada. https://www.rocscience.com/
29 Amini, M. and Ardestani, A. (2019). "Stability analysis of the north-eastern slope of Daralou copper open pit mine against a secondary toppling failure", Eng. Geol., 249, 89-101. https://doi.org/10.1016/j.enggeo.2018.12.022.   DOI
30 Alejano, L.R., Gomez-Marquez, I. and Martinez-Alegria, R. (2010), "Analysis of a complex toppling-circular slope failure", Eng. Geol., 114(1-2), 93-104. https://doi.org/10.1016/j.enggeo.2010.03.005.   DOI
31 Brideau, M.A. and Stead, D. (2010), "Controls on block toppling using a three-dimensional distinct element approach", Rock Mech. Rock Eng., 43(3), 241-260. https://doi.org/10.1007/s00603-009-0052-2.   DOI
32 Amini, M., Majdi, A. and Aydan, O. (2009), "Stability analysis and the stabilisation of flexural toppling failure", Rock Mech. Rock Eng., 42(5), 751-782. https://doi.org/10.1007/s00603-008-0020-2.   DOI
33 ASTM D7012 (2014), Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core Specimens under Varying States of Stress and Temperatures, ASTM International, West Conshohocken, PA, USA.
34 Aydan, O. and Amini, M. (2009), "An experimental study on rock slopes against flexural toppling failure under dynamic loading and some theoretical consideration for its stability assessment", J. School Marine Sci. Technol. Tokai Univ., 7(2), 25-40.
35 Azarafza, M., Akgun, H., Ghazifard, A. and Asghari-Kaljahi, E. (2020), "Key-block based analytical stability method for discontinuous rock slope subjected to toppling failure", Comput. Geotech., 124, 103620. https://doi.org/10.1016/j.compgeo.2020.103620.   DOI
36 Alejano, L.R., Sanchez-Alonso, C., Perez-Rey, I., Arzua, J., Alonso, E. and Gonzalez, J. (2018). "Block toppling stability in the case of rock blocks with rounded edges", Eng. Geol., 234, 192-203. https://doi.org/10.1016/j.enggeo.2018.01.010.   DOI
37 Amini, M., Gholamzadeh, M. and Khosravi, M.H. (2015), "Physical and theoretical modeling of rock slopes against block-flexure toppling failure", Int. J. Min. Geo-Eng., 49(2), 155-171. https://doi.org/10.22059/IJMGE.2015.56103.   DOI
38 Amini, M., Sarfaraz, H. and Esmaeili, K. (2018), "Stability analysis of slopes with a potential of slide-head toppling failure", Int. J. Rock Mech. Min. Sci., 112, 108-121. https://doi.org/10.1016/j.ijrmms.2018.09.008.   DOI
39 Alejano, L.R., Ferrero, A.M., Ramirez-Oyanguren, P. and Alvarez Fernandez, M.I. (2011), "Comparison of limit-equilibrium, numerical and physical models of wall slope stability", Int. J. Rock Mech. Min. Sci., 48(1), 16-26. https://doi.org/10.1016/j.ijrmms.2010.06.013.   DOI
40 Sageseta, C., Sanchez, J.M. and Canizal, J. (2001), "A general analytical solution for the required anchor force in rock slopes with toppling failure", Int. J. Rock Mech. Min. Sci., 38, 421-435. https://doi.org/10.1016/S1365-1609(01)00011-9.   DOI
41 Sahraeyan, M., Bahrami, M. and Hejazi, S.H. (2013), "The Aghajari (Upper Fars) formation in the folded Zagros zone, Iran: insights to identify facies, architectural elements, fluvial systems, petrography and provenance", Acta Geol. Sin., 87(4), 1019-1031. https://doi.org/10.1111/1755-6724.12107.   DOI
42 Sarfaraz, H., Khosravi, M.K. and Amini, M. (2019), "Numerical analysis of slide-head-toppling failure", J. Min. Environ., 10(4), 1001-1011. https://doi.org/10.22044/JME.2019.8521.1731.   DOI
43 Shen, J. and Karakus, M. (2014), "Three-dimensional numerical analysis for rock slope stability using shear strength reduction method", Canad. Geotech. J., 51(2), 164-172. https://doi.org/10.1139/cgj-2013-0191.   DOI
44 Haghgouei, H., Kargar, A.R., Amini, M. and Esmaeili, K. (2020), "An analytical solution for analysis of toppling slumping failure in rock slopes", Eng. Geol., 265, 105396. https://doi.org/10.1016/j.enggeo.2019.105396.   DOI
45 Sari, M. (2019), "Stability analysis of cut slopes using empirical, kinematical, numerical and limit equilibrium methods: case of old Jeddah-Mecca road (Saudi Arabia)", Environ. Earth Sci., 78(21), 621. https://doi.org/10.1007/s12665-019-8573-9.   DOI
46 Tang, C., Li, L., Xu, N. and Ma, K. (2015), "Microseismic monitoring and numerical simulation on the stability of high-steep rock slopes in hydropower engineering", J. Rock Mech. Geotech. Eng., 7(5), 493-508. https://doi.org/10.1016/j.jrmge.2015.06.010.   DOI
47 Villalobos, S.A. and Villalobos, F.A. (2021), "Effect of nail spacing on the global stability of soil nailed walls using limit equilibrium and finite element methods", Transport. Geotech., 26, 100454. https://doi.org/10.1016/j.trgeo.2020.100454.   DOI
48 Meng, Q.X., Wang, H.L., Xu, W.Y., Cai, M., Xu, J. and Zhang, Q. (2019), "Multiscale strength reduction method for heterogeneous slope using hierarchical FEM/DEM modelling", Comput. Geotech., 115, 103164. https://doi.org/10.1016/j.compgeo.2019.103164.   DOI
49 Nichol, S.L., Hungr, O. and Evans, S.G. (2002), "Large-scale brittle and ductile toppling of rock slopes", Canad. Geotech. J., 39(4), 773-788. https://doi.org/10.1139/t02-027.   DOI
50 Geological Survey of Iran, GSI (2009), Geological map of Kangan and Assalouyeh-scale and geological reports, Geological Survey of Iran Press, Tehran [in Persian]
51 Havaej, M., Stead, D., Eberhardt, E. and Fisher, B.R. (2014), "Characterization of bi-planar and ploughing failure mechanisms in footwall slopes using numerical modelling", Eng. Geol., 178(16), 109-120. https://doi.org/10.1016/j.enggeo.2014.06.003.   DOI
52 Rocscience (2016), DIPS software, (Version 7.0) - Stereographic projection program; Rocscience Inc., Toronto, Canada. https://www.rocscience.com/
53 Jing, L. and Stephansson, O. (2007), Fundamentals of Discrete Element Methods for Rock Engineering: Theory and Applications, Elsevier Science, Amsterdam, Netherlands.
54 Bukovansky, M., Rodriguez, M.A. and Cedrun, G. (1976), "Three rock slides in stratified and jointed rocks", In: Proceedings of the 3rd Congress International Society for Rock Mechanics, Denver, Colorado, IIB, 854-858.
55 Hudson, J.A. and Harrison, J.P. (1997), Engineering Rock Mechanics: An Introduction to the Principles, Elsevier Science, Amsterdam, Netherlands.
56 Ledesma, O., Mendive, I. and Sfriso, A. (2016), "Factor of Safety by the Strength-Reduction Technique Applied to the Hoek - Brown Model", SRK Consulting Press, ENIEF 2016, 1-24.
57 Lu, X., Su, Z., Huang, M. and Zhou, Y. "Strength reduction finite element analysis of a stability of large cross-river shield tunnel face with seepage", Europ. J. Environ. Civil Eng., 24(3), 336-353. https://doi.org/10.1080/19648189.2017.1383942.   DOI
58 Evans, R.S. (1981), "An analysis of secondary toppling rock failures-the stress redistribution method", Q. J. Eng. Geol. Hydrogeol., 14, 77-86. https://doi.org/10.1144/GSL.QJEG.1981.014.02.01.   DOI
59 Goodman, R.E. and Bray, J.W. (1976), "Toppling of rock slopes", Proceedings of the ASCE Specialty Conference on Rock Engineering for Foundations and Slopes, 2, 201-234.
60 Alejano, L.R., Gomez Marquez, I., Pons, B., Garcia Bastante, F. and Alonso, E. (2006), "Stability analysis of a potentially toppling over-tilted slope in granite", Proceedings of the 4th Asian Rock Mechanics Symposium, Singapore, November.
61 Zhou, C., Chen, Y., Jiang, Q. and Lu, W. (2011), "A generalized multi-field coupling approach and its application to stability and deformation control of a high slope", J. Rock Mech. Geotech. Eng., 3(3), 193-206. https://doi.org/10.3724/SP.J.1235.2011.00193.   DOI
62 Wyllie, D.C. and Mah, C. (2004), Rock Slope Engineering, 4th Edition, Spon Press, London, United Kingdom.
63 Wyllie, D.C. and Munn, F.J. (1979), "Use of movement monitoring to minimize production losses due to pit slope failure", Proceedings of the 1st International Symposium on Stability in Coal Mining, Miller Freeman Publications, Vancouver, Canada, 75-94.
64 Yang, Y., Sun, G. and Zheng, H. (2019), "Stability analysis of soil-rock-mixture slopes using the numerical manifold method", Eng. Anal. Bound. Elements, 109, 153-160. https://doi.org/10.1016/j.enganabound.2019.09.020.   DOI
65 Smith, J.V. (2015), "Self-stabilization of toppling and hillside creep in layered rocks", Eng. Geol., 196, 139-149. https://doi.org/10.1016/j.enggeo.2015.07.008.   DOI
66 Song, S., Cai, D., Feng, X., Chen, X. and Wang, D. (2011), "Safety monitoring and stability analysis of left abutment slope of Jinping I hydropower station", J. Rock Mech. Geotech. Eng., 3(1), 117-130. https://doi.org/10.3724/SP.J.1235.2011.00117.   DOI
67 Hammah, R.E., Curran, J.H., Yacoub, T. and Corkum, B. (2004), "Stability analysis of rock slopes using the finite element method", Proceedings of the EUROCK 2004 & 53rd Geomechanics Colloquium, Salzburg, October.
68 Hammah, R.E., Yacoub, T.E., Corkum, B.C. and Curran, J.H. (2005), "The Shear Strength Reduction Method for the Generalized Hoek-Brown Criterion", Proceedings of the 40th U.S. Symposium on Rock Mechanics (USRMS): Rock Mechanics for Energy, Mineral and Infrastructure Development in the Northern Regions, Alaska, June.
69 Zanbak, C. (1983), "Design charts for rock slopes susceptible to toppling", J. Geotech. Eng., 109(8), 1039-1062.   DOI
70 Zhang, G.C., Wang, F., Zhang, H., Tang, H.M., Li, X.H. and Zhong, Y. (2018), "New stability calculation method for rock slopes subject to flexural toppling failure", Int. J. Rock Mech. Min. Sci., 106, 319-328. https://doi.org/10.1016/j.ijrmms.2018.04.016.   DOI
71 Lamas, F., Irigaray, C. and Chacon, J. (2002), "Geotechnical characterization of carbonate marls for the construction of impermeable dam cores", Eng. Geol., 66(3-4), 283-294. https://doi.org/10.1016/S0013-7952(02)00048-0.   DOI
72 Spreafico, M.C., Cervi, F., Francioni, M., Stead, D. and Borgatti, L. (2017), "An investigation into the development of toppling at the edge of fractured rock plateaux using a numerical modelling approach", Geomorphology, 288, 83-98. https://doi.org/10.1016/j.geomorph.2017.03.023.   DOI
73 Hoek, E., Carranza-Torres, C. and Corkum, B. (2002), "Hoek-Brown failure criterion - 2002 edition", Proceedings of the NARMS-TAC Conference, 267-273. Toronto, July.
74 Hoffmann, H. (1974), "Zum Verformungs und Bruchverhalten regelmaβig geklufteter Felsboschungen", Rock Mech., 3, 31-34.
75 Jing, L. (2003), "A review of techniques, advances and outstanding issues in numerical modelling for rock mechanics and rock engineering", Int. J. Rock Mech. Min. Sci., 40(3), 283-353. https://doi.org/10.1016/S1365-1609(03)00013-3.   DOI
76 Jing, L. and Hudson, J.A. (2002), "Numerical methods in rock mechanics", Int. J. Rock Mech. Min. Sci., 39(4), 409-427. https://doi.org/10.1016/S1365-1609(02)00065-5.   DOI
77 Sun, C., Chen, C., Zheng, Y., Xia, K. and Zhang, W. (2018), "Topping failure analysis of anti-dip bedding rock slopes subjected to crest loads", Int. J. Geotech. Geol. Eng., 12(11), 685-693.
78 Azarafza, M., Asghari-Kaljahi, E. and Moshrefy-far, M.R. (2014), "Determination of geomechanical parameters of mass structure of gas Flare site in 6, 7 and 8 phases of South Pars Gas Complex", Proceedings of the 2th National & 1st International Geosciences Congress of Iran, Sari, Iran, February.
79 Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2019), "Geotechnical characteristics and empirical geoengineering relations of the South Pars Zone marls, Iran", Geomech. Eng., 19(5), 393-405. https://doi.org/10.12989/gae.2019.19.5.393.   DOI
80 Sun, C., Chen, C., Zheng, Y. and Xia, K. (2020), "A limit equilibrium analysis of the stability of a footwall slope with respect to bi-planar failure", Int. J. Geomech., 20(1), 04019137. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001523.   DOI
81 Sun, G., Lin, S., Zheng, H., Tan, Y. and Sui, T. (2020), "The virtual element method strength reduction technique for the stability analysis of stony soil slopes", Comput. Geotech., 119, 103349. https://doi.org/10.1016/j.compgeo.2019.103349.   DOI
82 Toussaint, G., Burov, E. and Avouac, J.P. (2004), "Tectonic evolution of a continental collision zone: A thermomechanical numerical model", Tectonics, 23(6), TC6003. https://doi.org/10.1029/2003TC001604.   DOI
83 Ukritchon, B., Yoang, S. and Keawsawasvong, S. (2019), "Three-dimensional stability analysis of the collapse pressure on flexible pavements over rectangular trapdoors", Transport. Geotech., 21, 100277. https://doi.org/10.1016/j.trgeo.2019.100277.   DOI
84 Labuz, J.F. and Zang, A. (2012), "Mohr-Coulomb Failure Criterion", Rock Mech. Rock Eng., 45, 975-979. https://doi.org/10.1007/s00603-012-0281-7.   DOI
85 Azarafza, M., Ghazifard, A., Akgun, H. and Asghari-Kaljahi, E. (2018), "Landslide susceptibility assessment of South Pars Special Zone, southwest Iran", Environ. Earth Sci., 77, 805. https://doi.org/10.1007/s12665-018-7978-1.   DOI
86 Babiker, A.F.A., Smith, C.C., Gilbert, M. and Ashby, J.P. (2014), "Non-associative limit analysis of the toppling-sliding failure of rock slopes", Int. J. Rock Mech. Min. Sci., 71, 1-11. https://doi.org/10.1016/j.ijrmms.2014.06.008.   DOI
87 Basahel, H. and Mitri, H. (2017), "Application of rock mass classification systems to rock slope stability assessment: A case study", J. Rock Mech. Geotech. Eng., 9(6), 993-1009. https://doi.org/10.1016/j.jrmge.2017.07.007.   DOI
88 Adhikary, D.P., Dyskin, A.V. and Jewell, R.J. (1997), "A study of the mechanism of flexural toppling failure of rock slopes", Rock Mech. Rock Eng., 30(2), 75-93. https://doi.org/10.1007/BF01020126.   DOI
89 Aghanabati, A. (2007), Geology of Iran, Geological Survey of Iran press, Tehran, Iran.
90 Asadi, M. and Ashtiani, R.S. (2018), "Stability analysis of anisotropic granular base layers in flexible pavements". Transport. Geotech., 14, 183-189. https://doi.org/10.1016/j.trgeo.2018.01.001.   DOI