• Title/Summary/Keyword: Titanium sheet

Search Result 80, Processing Time 0.022 seconds

A Study on Plastic Deformation Characteristics and Formability for Pure Titanium Sheet (순 티타늄 판재의 변형 특성 및 성형성 평가)

  • In, J.H.;Jeong, K.C.;Lee, H.S.;Kim, J.H.;Kim, J.J.;Kim, Young Su
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.301-313
    • /
    • 2018
  • In this paper, tensile test was performed on pure titanium sheet (CP Ti sheet) with HCP structure in each direction to evaluate mechanical and surface properties and analyze microstructural changes during plastic deformation. We also evaluated forming limits of Ti direction in dome-type punch stretching test using a non-contact three-dimensional optical measurement system. As a result, it was revealed the pure titanium sheet has strong anisotropic property in yield stress, stress-strain curve and anisotropy coefficient according to direction. It was revealed that twinning occurred when the pure titanium sheet was plastic deformed, and tendency depends differently on direction and deformation mode. Moreover, this seems to affect the physical properties and deformation of the material. In addition, it was revealed the pure titanium sheet had different surface roughness changes in 0 degree direction and 90 degree direction due to large difference of anisotropy, and this affects the forming limit. It was revealed the forming limit of each direction obtained through the punch stretching test gave higher value in 90 degree direction compared with forming limit in 0 degree direction.

Evaluation of Pess Formability for Ti-6Al-4V Sheet at Elevated Temperature (Ti-합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Park, J.G.;Park, N.K.;Kim, Y.S.
    • Transactions of Materials Processing
    • /
    • v.19 no.4
    • /
    • pp.230-235
    • /
    • 2010
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only for aerospace parts but also for bio prothesis and motorcycle. However, the database is insufficient in the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hecker‘s punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for the development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature. The formability of Ti-6Al-4V titanium alloy sheet at $700^{\circ}C$ increases about 7 times compared with that at room temperature.

Evaluation of press formability for Ti-6Al-4V sheet at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 성형성 평가)

  • Bae, M.K.;Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.152-157
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. But the database is insufficient of the titanium alloy for press forming process. In this study, the effect of temperature on the forming limit diagram was investigated for Ti-6Al-4V titanium alloy sheet through the Hocker's punch stretching test at elevated temperature. Experimental results obtained in this study can provide a database for development of press forming process at elevated temperature of Ti-6Al-4V titanium alloy sheet. From the experimental studies it can be concluded that the formability of Ti-6Al-4V titanium alloy sheet is governed by the ductile failure for the testing temperature below and vice versa neck-induced failure above the recrystalization temperature $0.5T_m$. The formability of Ti-6Al-4V titanium alloy sheet at $750^{\circ}C$ increases about 7 times compared with that at room temperature.

  • PDF

Plastic deformation characteristic of titanium alloy sheet (Ti-6Al-4V) at elevated temperature (티타늄 합금판재(Ti-6Al-4V)의 고온 소성면형특성(1))

  • Park, J.G.;Kim, J.H.;Park, N.K.;Kim, Y.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.158-163
    • /
    • 2009
  • Titanium alloy sheets have excellent specific strength and corrosion resistance as well as good performance at high temperature. Recently, titanium alloys are widely employed not only aerospace parts but also bio prothesis and motorcycle. However, due to the low formability and large spring back at room temperature, titanium alloy sheets were usually formed by slow forming or hot forming with heating die and specimen. In the sheet metal forming area, FE simulation technique to optimize forming process is widely used. To achieve high accuracy FE simulation results, Identification of material properties and deformation characteristic such as yield function are very important. In this study, uniaxial tensile and biaxial tensile test of Ti-6Al-4V alloy sheet with thickness of 1.0mm were performed at elevated temperature of 873k. Biaxial tensile tests with cruciform specimen were performed until the specimen was breakdown to characterize the yield locus of Ti-6Al-4V alloy sheet. The experimental results for yield locus are compared with the theoretical predictions based on Von Mises, Hill, Logan-Hosford, and Balat's model. Among these Logan-Hosford's yield criterion well predicts the experimental results.

  • PDF

Void Defects in Composite Titanium Disilicide Process (복합 티타늄실리사이드 공정에서 발생한 공극 생성 연구)

  • Cheong, Seong-Hwee;Song, Oh-Sung
    • Korean Journal of Materials Research
    • /
    • v.12 no.11
    • /
    • pp.883-888
    • /
    • 2002
  • We investigated the void formation in composite-titanium silicide($TiSi_2$) process. We varied the process conditions of polycrystalline/amorphous silicon substrate, composite $TiSi_2$ deposition temperature, and silicidation annealing temperature. We report that the main reason for void formation is the mass transport flux discrepancy of amorphous silicon substrate and titanium in composite layer. Sheet resistance in composite $TiSi_2$ without patterns is mainly affected by silicidation rapid thermal annealing (RTA) temperature. In addition, sheet resistance does not depend on the void defect density. Sheet resistance with sub-0.5 $\mu\textrm{m}$ patterns increase abnormally above $850^{\circ}C$ due to agglomeration. Our results imply that $sub-750^{\circ}C$ annealing is appropriate for sub 0.5 $\mu\textrm{m}$ composite X$sub-750_2$ process.

Effect of processing parameters on the sheet forming of titanium alloy (타이타늄 합금의 판재성형성에 미치는 공정변수의 영향)

  • Kim, Jeoung-Han;Seo, Sang-Hyun;Lee, Young-Seon;Kim, Young-Suk;Yeom, Jong-Taek;Hong, Jae-Keun;Park, Nho-Kwang
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2009.05a
    • /
    • pp.148-151
    • /
    • 2009
  • This paper presents an experimental study of deep-drawing and rubber-pad forming process using titanium alloy sheet. The process and results of the work carried out to investigate the capability of the process and to optimize th process parameters to ensure a sound forming. Room and high temperature tensile tests were carried out at various process conditions and microstructural evaluation was investigated. The experimental investigation was done using 150 ton hydraulic press to produce a deep-drawn part. Both graphite lubricant and polyethylene sheet were essential for defect-free product. Regarding the rubber-pad forming, reasonable formability was obtained only for pure-Ti not for Ti-6Al-4V.

  • PDF

Studies on weldment performance of Ti/Al dissimilar sheet metal joints using laser beam welding

  • Kalaiselvan, K.;Elango, A.;Nagarajan, N.M.;Mathiazhagan, N.;Vignesh, Kannan
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.627-634
    • /
    • 2018
  • Laser beam welding is more advantageous compared to conventional methods. Titanium/Aluminium dissimilar alloy thin sheet metals are difficult to weld due to large difference in melting point. The performance of the weldment depends upon interlayer formation and distribution of intermetallics. During welding, aluminium gets lost at the temperature below the melting point of titanium. Therefore, it is needed to improve a new metal joining techniques between these two alloys. The present work is carried for welding TI6AL4V and AA2024 alloy by using Nd:YAG Pulsed laser welding unit. The performance of the butt welded interlayer structures are discussed in detail using hardness test and SEM. Test results reveal that interlayer fracture is caused near aluminium side due to low strength at the weld joint.

Development of Thermal Properties on the Roof Waterproof with Insulation System using the Diffused Reflection Material (확산반사를 이용한 경질시트 옥상 단열방수공법의 열성능 개선에 관한 연구)

  • Koo, Jae-Oh
    • KIEAE Journal
    • /
    • v.7 no.1
    • /
    • pp.73-80
    • /
    • 2007
  • This paper aims to develop the diffused reflection material in order to reduce the solar absorption coefficient, and to compare the thermal properties with the different roof structure system; one is using the diffused reflection material applied the upper side of the rigid sheet waterproof system and the other is using the conventional up-side down waterproof system on the roof. For this purpose two experimental test boxes were made of same iso-panel wall and floor with different roof system. The experiment was carried out under these process; measure the surface temperature exposed solar radiation of the variation of the reflection materials(cement paste, silica, galvanized steel and titanium dioxide(TiO2)), measure and analyze the variation of the temperature distribution of the each roof system and indoor air in order to evaluate the thermal properties according to the different roof system. The result shows clearly that using the titanium dioxide(TiO2) might be more effective to reduce the solar insolation.

Evaluation of press formability of pure titanium sheet (순 티탄늄 판재의 프레스 성형성 평가(제 1보))

  • Kim, Young-Suk;In, Jeong-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.380-388
    • /
    • 2016
  • Commercially pure titanium (CP Ti) has been actively used in plate heat exchangers due to its light weight, high specific strength, and excellent corrosion resistance. However, compared with automotive steels and aluminum alloys, there has not been much research on the plastic deformation characteristics and press formability of CP Ti sheet. In this study, the mechanical properties of CP Ti sheet are clarified in relation to press formability, including anisotropic properties and the stress-strain relation. The flow curve of the true stress-true strain relation is fitted well by the Kim-Tuan hardening equation rather than the Voce and Swift models. The forming limit curve (FLC) of CP Ti sheet was experimentally evaluated as a criterion for press formability by punch stretching tests. Analytical predictions were also made via Hora's modified maximum force criterion. The predicted FLC with the Kim-Tuan hardening model and an appropriate yield function shows good correlation with the experimental results of the punch stretching test.

Correction of the Traumatic Enophthalmos Using Titanium Reinforced Porous Polyethylene (티타늄 강화 다공성 폴리에틸렌을 이용한 외상성 안구 함몰의 교정)

  • Lee, Jae-Yeol;Kim, Yong-Deok;Shin, Sang-Hun;Kim, Uk-Kyu;Chung, In-Kyo;Hwang, Dae-Seok
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.35 no.3
    • /
    • pp.184-188
    • /
    • 2013
  • Post-traumatic enophthalmos is a relatively common problem following orbitozygomatic fractures. Bony-volume expansion and soft tissue atrophy are considered the main etiological causes of this condition. Enophthalmos is corrected mostly through reducing the enlarged orbit volume. Autogenous graft and various alloplastic materials are used for this purpose. Porous polyethylene is highly biocompatible, durable, and remarkably stable. Also, the titanium plate embedded in a porous polyethylene sheet provides radiographic visibility and increased sheet strength and contour retention. We present experiences of titanium reinforced porous polyethylene for correction of the traumatic enophthalmos with literature review.