Browse > Article
http://dx.doi.org/10.3740/MRSK.2002.12.11.883

Void Defects in Composite Titanium Disilicide Process  

Cheong, Seong-Hwee (Department of Materials Science and Engineering, The University of Seoul)
Song, Oh-Sung (Department of Materials Science and Engineering, The University of Seoul)
Publication Information
Korean Journal of Materials Research / v.12, no.11, 2002 , pp. 883-888 More about this Journal
Abstract
We investigated the void formation in composite-titanium silicide($TiSi_2$) process. We varied the process conditions of polycrystalline/amorphous silicon substrate, composite $TiSi_2$ deposition temperature, and silicidation annealing temperature. We report that the main reason for void formation is the mass transport flux discrepancy of amorphous silicon substrate and titanium in composite layer. Sheet resistance in composite $TiSi_2$ without patterns is mainly affected by silicidation rapid thermal annealing (RTA) temperature. In addition, sheet resistance does not depend on the void defect density. Sheet resistance with sub-0.5 $\mu\textrm{m}$ patterns increase abnormally above $850^{\circ}C$ due to agglomeration. Our results imply that $sub-750^{\circ}C$ annealing is appropriate for sub 0.5 $\mu\textrm{m}$ composite X$sub-750_2$ process.
Keywords
composite-titanium silicide; amorphous; polycrystalline; sheet resistance; voids;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R.T. Tung, Applied Surface Science, 117/118, 268 (1997)   DOI   ScienceOn
2 H. Zhang, J. Poole, R. Eller and M.Keefe, J. Vac. Sci. Technol. A, 17(4), 1904 (1999)   DOI
3 Y. Akasaka, K. Miyano, K. Nakajima, M. Takahasi, S. Tanaka, and K. Suguro, Jpn. J. Appl. Phys., 38(4B), 2385 (1999)   DOI
4 M. Sekiguchi, M. Yamanaka, T. Fuji, M. Fukumato, and S. Mayumi, J. Electrochem. Soc., 144(1), (1997)
5 J. Lutze, G. Scott, and M. Manley, IEEE Electron Device Letters., 21(4), 155 (2000)   DOI   ScienceOn
6 H. Fang, M.C. Oztu, E.G. Seebauer, D.E. Batchelor, Journal of the Electrochemical Society, 146(11), 4240 (1999)   DOI
7 J.P. Gambino, E.G. Colgan, A.G. Domenicucci, and B. Cunningham, J. Electrochem. Soc., 145(4), (1998)
8 C.Y. Kang, D.G. Kang, and J.W. Lee, Journal of Applied Physics, 86, 5293 (1999)   DOI
9 H.S. Kim, D.H. Ko, D.L. Base, Kazuyuki Fujihara, and H.K. Kang, IEEE Electron Device Letters, 20(2), 86 (1999)   DOI   ScienceOn
10 I. Raaijmakers and K.B. Kim, J. Appl. Phys., 67(10), 6255 (1990)   DOI
11 D.G. Ong, Modern MOS Technology:Process, Devices, and Design, McGraw-Hill, New York (1984)
12 K. Holloway and R. Sinclair, J. Appl. Phys., 61(4), 1359 (1987)   DOI
13 T.P. Nolan, R. Sinclair, and R. Beyers, J. Appl. Phys., 7, 720 (1992)   DOI
14 J.S. Byun, D.H. Kim, and W.S.Kim, H.J.Kim, J. Appl. Phys., 78(3), 1725 (1995)   DOI   ScienceOn
15 J. Lasky, J.S. Nakos, O.J. Cain, and P.J. Geiss, IEEE Trans. Electron Device, 38, 262 (1991)   DOI   ScienceOn
16 S. Nygren, M. Ostling, S.D. Peterson, H. Norstrom, K.H. Ryden, R. Bushta, and C. Chatfield, Thin Solid Films, 168, 325 (1989)   DOI   ScienceOn