• Title/Summary/Keyword: Titanium isopropoxide (TTIP)

Search Result 33, Processing Time 0.023 seconds

Preparation and characterization of$PbTiO_3$ thin films deposited on Si(100) substrate by MOCVD (MOCVD 법에 의해 Si(100) 기판 위에 제조된 $PbTiO_3$ 박막의 증착 특성)

  • 김종국;박병옥
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.9 no.1
    • /
    • pp.34-38
    • /
    • 1999
  • $PbTiO_3$(PT)thin films were prepared by simultaneous of $TiO_2$ and PbO on Si(100) substrate using metaloganic chemical vapor deposition (MOCVD). Titanium tetra-isopropoxide (TTIP) and $Pb(TMHD)_2$were used as source materials. As evaporation temperature and flow rate of TTIP were examined the crystal structure of PT thin films using XRD with setting deposition temperature, flow rate of Pb, and total flow rate of $520^{\circ}C$, 30 sccm, and 750 sccm, respectively. PT thin films could be deposited under 48~$50^{\circ}C$ and 18~22sccm of evaporation temperature and flow rate of TTIP, respectively. It was found that lead, oxygen, and silicon diffused at the iaterface between the film and the substrate.

  • PDF

Titanium Isopropoxide (TTIP) Treatment Strategy for V2O5-WO3/TiO2 SCR Catalysts with a Wide Operating Temperature (넓은 작동 온도범위를 가지는 V2O5-WO3/TiO2 SCR 촉매 개발을 위한 티타늄 이소프로폭사이드(TTIP) 활용 전략)

  • Jaeho Lee;Gwang-hun Cho;Geumyeon Lee;Changyong Yim;Young-Sei Lee;Taewook Kim
    • Applied Chemistry for Engineering
    • /
    • v.34 no.4
    • /
    • pp.357-364
    • /
    • 2023
  • Selective catalytic reduction (SCR) is the most effective method for reducing nitrogen oxide emissions, but the operating temperature range of V2O5-WO3/TiO2 catalysts is narrow (300~400℃). In this study, a new catalyst with an operating temperature range of 200~450℃ was developed. The catalyst poison, ammonium bisulfate, generated during the SCR process can be removed by heating above 350℃. To increase the number of active sites and promote the dispersion of active materials, titanium isopropoxide (TTIP) treatment was performed on the TiO2 support with various TTIP/TiO2 mass ratios. Among them, the 5 wt% TTIP loaded catalyst showed improved performance due to higher thermal stability caused by high W dispersion and the formation of V5+. In addition, the 5 wt% TTIP-loaded catalyst prepared by a one-step co-precipitation method showed greater V-OH and W-OH dispersion and enhanced interactions in contrast to conventional methods, resulting in higher catalytic activity at lower temperatures. This review article aims to provide an accessible explanation for researchers investigating how to improve the surface properties of TiO2 catalysts using TTIP.

Atomic Layer Deposition of TiO2 using Titanium Isopropoxide and H2O: Operational Principle of Equipment and Parameter Setting

  • Cho, Karam;Park, Jung-Dong;Shin, Changhwan
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.16 no.3
    • /
    • pp.346-351
    • /
    • 2016
  • Titanium dioxide ($TiO_2$) films are deposited by atomic layer deposition (ALD) using titanium isopropoxide (TTIP) and $H_2O$ as precursors. The operating instructions for the ALD equipment are described in detail, along with the settings for relevant parameters. The thickness of the $TiO_2$ film is measured, and thereby, the deposition rate is quantitatively estimated to verify the linearity of the deposition rate.

A Study on the TiN Thin Film by Sol-Gel Method (졸-겔 방법으로 제조한 TiN 박막에 관한 연구)

  • 김왕섭;선효님;김경용;김병호
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.4
    • /
    • pp.328-334
    • /
    • 1992
  • TiO2 sols were prepared by hydrolysis and polymerization of titanium tetra-isopropoxide (TTIP) in the presence of diethanolamine (DEA). The optimal mole ratio of water to TTIP is 2 and the concentration of the TiO2 sol 0.7 M. Golden TiN films without cracks were obtained by dipping Si(110) wafers into the TiO2 sol and followed by nitridation in NH3 at 1100$^{\circ}C$ for 5 h. The TiN films were studied by an optical microscope, DTA, TGA and X-ray analysis.

  • PDF

Effect of raw materials for the synthesis of TiO2 powders by a hydrothermal processing

  • Park, Jungju;Choi, Yeon Bin;Son, Jung Hun;Bae, Dong-Sik
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.28 no.4
    • /
    • pp.166-169
    • /
    • 2018
  • $TiO_2$ nanoparticles were prepared under high temperature and pressure conditions by precipitation from titanium tetrachloride ($TiCl_4$) and titanium isopropoxide (TTIP). $TiO_2$ powders were obtained in the temperature range of $150^{\circ}C{\sim}190^{\circ}C$ for 4 h. The microstructure and phase of the synthesized particles were studied by TEM and XRD. TEM and X-ray diffraction pattern shows that the synthesized particles were crystalline. The average sizes of the synthesized particles from titanium tetrachloride and titanium isopropoxide were below 20 nm and 10 nm, respectively. The average size of the synthesized particles increased with increasing reaction temperature. The effects of synthesis parameters, such as the reaction temperature and pH value are discussed.

Efficiency Characteristics of DSSC Using TiO2 Paste for Low Temperature Annealing with TTIP (TTIP가 첨가된 저온소성용 TiO2 Paste를 이용한 DSSC의 효율 특성)

  • Kwon, Sung Yeol;Sim, Chang Soo;Yang, Wook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.1
    • /
    • pp.53-57
    • /
    • 2019
  • Recently, the application field of solar panels is increasing. Accordingly, the demand for flexible devices is also steadily increasing. It is therefore necessary to develop $TiO_2$ paste for low-temperature annealing for flexible DSSC fabrication. In this study, the $TiO_2$ paste for low-temperature annealing with varying molar ratio of titanium isopropoxide (TTIP) was prepared, and DSSC was fabricated and its characteristics were compared. As a result, there was no deformation of the particles on the surface in the SEM data. However, the highest open circuit voltage, short circuit current, and fill factor were measured in the DSSC unit cell prepared by adding 0.5 mol of TTIP to the $TiO_2$ paste, and the highest efficiency was 4.148%.

Preparation and Characterization of Graft Copolymer/$TiO_2$ Nanocomposite Polymer Electrolyte Membranes (가지형 공중합체/$TiO_2$ 나노복합 고분자 전해질막의 제조 및 분석)

  • Koh, Jong-Kwan;Roh, Dong-Kyu;Patel, Rajkumar;Shul, Yong-Gun;Kim, Jong-Hak
    • Membrane Journal
    • /
    • v.20 no.1
    • /
    • pp.1-7
    • /
    • 2010
  • A graft copolymer, i.e. poly(vinylidene fluoride-co-chlorotrifluoroethylene )-g-poly(styrene sulfonic acid) (P(VDF-co-CTFE)-g-PSSA) with 47 wt% of PSSA was synthesized via atom transfer radical polymerization (ATRP). This copolymer was combined with titanium isopropoxide (TTIP) to produce graft copolymer/$TiO_2$ nanocomposite membranes via sol-gel process. $TiO_2$ precursor (TTIP) was selectively incorporated into the hydrophilic PSSA domains of the graft copolymer and grown to form $TiO_2$ nanoparticles, as confirmed by FT-IR and UV-visible spectroscopy. Water uptake and ion exchange capacity (IEC) decreased with TTIP contents due to the decrease in number of sulfonic acid in the membranes. At 5 wt% of TTIP, the mechanical properties of membranes increased while maintaining the proton conductivity.

Synthesis and Analysis of TiO$_2$ Particles Using an Electrically Heated Tube Furnace (전기가열 튜브로를 이용한 광촉매 TiO$_2$ 입자의 제조 및 촉매 특성 분석)

  • 현정은;배귀남;이태규
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2003.05b
    • /
    • pp.401-402
    • /
    • 2003
  • TiO$_2$는 광촉매로서 자외선이 조사되면 여기상태로 되어 광활성을 나타내므로, 휘발성 유기화합물(VOCs), 악취, 중금속 물질 등을 제어하는데 널리 사용되고 있다(Lee and Biswas, 1998). TiO$_2$는 기상 및 액상 등 여러 가지 방법으로 제조되고 있는데(Morooka et al., 1989), 본 연구에서는 기상 방법의 하나인 전기가열 튜브로를 이용하여 TiOs 입자를 제조하였다. 즉, TTIP(titanium isopropoxide, Ti[OCH($CH_3$)$_2$]$_4$)와 공기를 전기가열 튜브로의 d열원을 이용하여 반응시키는 방법을 사용하였다. TiO2의 광활성에 영향을 미치는 변수로는 전기로의 온도, TTIP의 초기 농도, carrier gas의 유량, 산화시키기 위한 산소의 양, 수분의 양 등이 있다. (중략)

  • PDF

In Situ X-ray Photoemission Spectroscopy Study of Atomic Layer Deposition of $TiO_2$ on Silicon Substrate

  • Lee, Seung-Youb;Jeon, Cheol-ho;Kim, Yoo-Seok;Kim, Seok-Hwan;An, Ki-Seok;Park, Chong-Yun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.222-222
    • /
    • 2011
  • Titanium dioxide (TiO2) has a number of applications in optics and electronics due to its superior properties, such as physical and chemical stability, high refractive index, good transmission in vis and NIR regions, and high dielectric constant. Atomic layer deposition (ALD), also called atomic layer epitaxy, can be regarded as a special modification of the chemical vapor deposition method. ALD is a pulsed method in which the reactant vapors are alternately supplied onto the substrate. During each pulse, the precursors chemisorb or react with the surface groups. When the process conditions are suitably chosen, the film growth proceeds by alternate saturative surface reactions and is thus self-limiting. This makes it possible to cover even complex shaped objects with a uniform film. It is also possible to control the film thickness accurately simply by controlling the number of pulsing cycles repeated. We have investigated the ALD of TiO2 at 100$^{\circ}C$ using precursors titanium tetra-isopropoxide (TTIP) and H2O on -O, -OH terminated Si surface by in situ X-ray photoemission spectroscopy. ALD reactions with TTIP were performed on the H2O-dosed Si substrate at 100$^{\circ}C$, where one cycle was completed. The number of ALD cycles was increased by repeated deposition of H2O and TTIP at 100$^{\circ}C$. After precursor exposure, the samples were transferred under vacuum from the reaction chamber to the UHV chamber at room temperature for in situ XPS analysis. The XPS instrument included a hemispherical analyzer (ALPHA 110) and a monochromatic X-ray source generated by exciting Al K${\alpha}$ radiation (h${\nu}$=1486.6 eV).

  • PDF

Fabrication of Silica and Titania Inverse Opals via Supercritical Deposition (초임계 증착법을 통한 실리카와 타이타니아 역 오팔의 제조)

  • Yu, Hye-Min;Lim, Jong-Sung
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.38-42
    • /
    • 2012
  • Photonic crystals (PCs) are highly ordered porous materials which have been much attention because of its potential for controlling the light sauces. There are many methods for synthesizing this kind of materials among them we chose the supercritical deposition. With this method the reactants can easily infiltrate into the complex structure. In this paper, supercritical carbon dioxide ($scCO_2$) was used as a reaction medium, which is known as a sustainable solvent due to its nontoxic and noninflammable characteristics. We coated the colloidal template with metal alkoxide by using $scCO_2$ and then obtained macro-porous inverse opals. The reaction was carried out at $40^{\circ}C$ and 80 bar. We synthesized two different inverse opals which called silica and titania inverse opals by use of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) as a precursor, respectively.