DOI QR코드

DOI QR Code

TTIP가 첨가된 저온소성용 TiO2 Paste를 이용한 DSSC의 효율 특성

Efficiency Characteristics of DSSC Using TiO2 Paste for Low Temperature Annealing with TTIP

  • 권성열 (부경대학교 전기공학과) ;
  • 심창수 (부경대학교 전기공학대학원) ;
  • 양욱 (부경대학교 전기공학대학원)
  • Kwon, Sung Yeol (Department of Electrical Engineering, Pukyong National University) ;
  • Sim, Chang Soo (Graduate School of Electrical Engineering, Pukyong National University) ;
  • Yang, Wook (Graduate School of Electrical Engineering, Pukyong National University)
  • 투고 : 2018.06.12
  • 심사 : 2018.07.10
  • 발행 : 2019.01.01

초록

Recently, the application field of solar panels is increasing. Accordingly, the demand for flexible devices is also steadily increasing. It is therefore necessary to develop $TiO_2$ paste for low-temperature annealing for flexible DSSC fabrication. In this study, the $TiO_2$ paste for low-temperature annealing with varying molar ratio of titanium isopropoxide (TTIP) was prepared, and DSSC was fabricated and its characteristics were compared. As a result, there was no deformation of the particles on the surface in the SEM data. However, the highest open circuit voltage, short circuit current, and fill factor were measured in the DSSC unit cell prepared by adding 0.5 mol of TTIP to the $TiO_2$ paste, and the highest efficiency was 4.148%.

키워드

JJJRCC_2019_v32n1_53_f0001.png 이미지

Fig. 1. DSSC fabrication process.

JJJRCC_2019_v32n1_53_f0002.png 이미지

Fig. 3. XRD data of TiO2 layer with TTIP molar ratio (a: 0.1 mol, b: 0.3 mol, c: 0.5 mol, d: 0.7 mol, and e: 0.9 mol).

JJJRCC_2019_v32n1_53_f0003.png 이미지

Fig. 2. The surface of TiO2 layer with TTIP molar ratio.

JJJRCC_2019_v32n1_53_f0004.png 이미지

Fig. 4. I-V Curve by addition of diffenrent TTIP in TiO2 paste.

Table 1. The molar ratio of TTIP used in TiO2 paste.

JJJRCC_2019_v32n1_53_t0001.png 이미지

Table 2. Electrical properties and efficiency by different additive amount of TTIP in TiO2 paste.

JJJRCC_2019_v32n1_53_t0002.png 이미지

참고문헌

  1. B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). [DOI: https://doi.org/10.1038/353737a0]
  2. L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007). [DOI: https://doi.org/10.1039/b617073k]
  3. T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008). [DOI: https://doi.org/10.1039/b809672d]
  4. M.K.I. Senevirathna, P.K.D.D.P. Pitigala, E.V.A. Premalal, K. Tennakone, G.R.A. Kumara, and A. Konno, Sol. Energy Mater. Sol. Cells, 91, 544 (2007). [DOI: https://doi.org/10.1016/j.solmat.2006.11.008]
  5. S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 115 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.2.115]
  6. S. Y. Kwon, W. Yang, and Z. H. Zhang, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 746 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.11.746]
  7. H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. Acta, 361, 677 (2008). [DOI: https://doi.org/10.1016/j.ica.2007.05.017]
  8. H. S. Park. S. Y. Kwon, and W. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 537 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.7.537]
  9. T. Miyasaka and Y. Kijitori, J. Electrochem. Soc., 151, A1767 (2004). [DOI: https://doi.org/10.1149/1.1796931]
  10. A. J. Medford, M. R. Lilliedal, M. Jorgensen, D. Aaro, H. Pakalski, J. Fyenbo, and F. C. Krebs, Opt. Express, 18, A272 (2010). [DOI: https://doi.org/10.1364/OE.18.00A272]
  11. F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem., 19, 5442 (2009). [DOI: https://doi.org/10.1039/b823001c]
  12. D. Vorkapic and T. Matsoukas, J. Am. Ceram. Soc., 81, 2815 (1998). [DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02701.x]
  13. Y. R. Jung, J. Y. Park, and H. B. Gu, Mater. Lett., 138, 268 (2015). [DOI: https://doi.org/10.1016/j.matlet.2014.09.135]