Browse > Article
http://dx.doi.org/10.4313/JKEM.2019.32.1.53

Efficiency Characteristics of DSSC Using TiO2 Paste for Low Temperature Annealing with TTIP  

Kwon, Sung Yeol (Department of Electrical Engineering, Pukyong National University)
Sim, Chang Soo (Graduate School of Electrical Engineering, Pukyong National University)
Yang, Wook (Graduate School of Electrical Engineering, Pukyong National University)
Publication Information
Journal of the Korean Institute of Electrical and Electronic Material Engineers / v.32, no.1, 2019 , pp. 53-57 More about this Journal
Abstract
Recently, the application field of solar panels is increasing. Accordingly, the demand for flexible devices is also steadily increasing. It is therefore necessary to develop $TiO_2$ paste for low-temperature annealing for flexible DSSC fabrication. In this study, the $TiO_2$ paste for low-temperature annealing with varying molar ratio of titanium isopropoxide (TTIP) was prepared, and DSSC was fabricated and its characteristics were compared. As a result, there was no deformation of the particles on the surface in the SEM data. However, the highest open circuit voltage, short circuit current, and fill factor were measured in the DSSC unit cell prepared by adding 0.5 mol of TTIP to the $TiO_2$ paste, and the highest efficiency was 4.148%.
Keywords
DSSC; $TiO_2$; Photo elctrode; TTIP; Solar cell;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 B. O'Regan and M. Gratzel, Nature, 353, 737 (1991). [DOI: https://doi.org/10.1038/353737a0]   DOI
2 L. M. Peter, Phys. Chem. Chem. Phys., 9, 2630 (2007). [DOI: https://doi.org/10.1039/b617073k]   DOI
3 T. W. Hamann, R. A. Jensen, A.B.F. Martinson, H. V. Ryswyk, and J. T. Hupp, Energy Environ. Sci., 1, 66 (2008). [DOI: https://doi.org/10.1039/b809672d]   DOI
4 M.K.I. Senevirathna, P.K.D.D.P. Pitigala, E.V.A. Premalal, K. Tennakone, G.R.A. Kumara, and A. Konno, Sol. Energy Mater. Sol. Cells, 91, 544 (2007). [DOI: https://doi.org/10.1016/j.solmat.2006.11.008]   DOI
5 S. Y. Kwon, W. Yang, and Z. Y. Zhou, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 115 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.2.115]   DOI
6 S. Y. Kwon, W. Yang, and Z. H. Zhang, J. Korean Inst. Electr. Electron. Mater. Eng., 27, 746 (2014). [DOI: https://doi.org/10.4313/JKEM.2014.27.11.746]   DOI
7 H. S. Park. S. Y. Kwon, and W. Yang, J. Korean Inst. Electr. Electron. Mater. Eng., 25, 537 (2012). [DOI: https://doi.org/10.4313/JKEM.2012.25.7.537]   DOI
8 T. Miyasaka and Y. Kijitori, J. Electrochem. Soc., 151, A1767 (2004). [DOI: https://doi.org/10.1149/1.1796931]   DOI
9 A. J. Medford, M. R. Lilliedal, M. Jorgensen, D. Aaro, H. Pakalski, J. Fyenbo, and F. C. Krebs, Opt. Express, 18, A272 (2010). [DOI: https://doi.org/10.1364/OE.18.00A272]   DOI
10 F. C. Krebs, S. A. Gevorgyan, and J. Alstrup, J. Mater. Chem., 19, 5442 (2009). [DOI: https://doi.org/10.1039/b823001c]   DOI
11 D. Vorkapic and T. Matsoukas, J. Am. Ceram. Soc., 81, 2815 (1998). [DOI: https://doi.org/10.1111/j.1151-2916.1998.tb02701.x]   DOI
12 Y. R. Jung, J. Y. Park, and H. B. Gu, Mater. Lett., 138, 268 (2015). [DOI: https://doi.org/10.1016/j.matlet.2014.09.135]   DOI
13 H. J. Koo, J. Park, B. Yoo, K. Yoo, K. Kim, and N. G. Park, Inorg. Chim. Acta, 361, 677 (2008). [DOI: https://doi.org/10.1016/j.ica.2007.05.017]   DOI