DOI QR코드

DOI QR Code

Fabrication of Silica and Titania Inverse Opals via Supercritical Deposition

초임계 증착법을 통한 실리카와 타이타니아 역 오팔의 제조

  • Yu, Hye-Min (Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Lim, Jong-Sung (Department of Chemical and Biomolecular Engineering, Sogang University)
  • 유혜민 (서강대학교 화공생명공학과) ;
  • 임종성 (서강대학교 화공생명공학과)
  • Received : 2011.10.28
  • Accepted : 2011.12.19
  • Published : 2012.03.30

Abstract

Photonic crystals (PCs) are highly ordered porous materials which have been much attention because of its potential for controlling the light sauces. There are many methods for synthesizing this kind of materials among them we chose the supercritical deposition. With this method the reactants can easily infiltrate into the complex structure. In this paper, supercritical carbon dioxide ($scCO_2$) was used as a reaction medium, which is known as a sustainable solvent due to its nontoxic and noninflammable characteristics. We coated the colloidal template with metal alkoxide by using $scCO_2$ and then obtained macro-porous inverse opals. The reaction was carried out at $40^{\circ}C$ and 80 bar. We synthesized two different inverse opals which called silica and titania inverse opals by use of tetraethyl orthosilicate (TEOS) and titanium isopropoxide (TTIP) as a precursor, respectively.

정보 전달의 수단으로의 빛을 제어하는 기술에 대한 연구가 활발한 가운데, 최근 가장 각광 받고 있는 것이 광결정(Photonic crystals)을 갖는 물질이다. 이를 합성하는 다양한 방법 중에서 초임계 증착법(Supercritical deposition)을 사용하면, 복잡한 내부 구조물까지의 반응물의 침투가 용이하여 신속하고 효율적인 공정이 가능하다. 본 논문에서는 비독성, 비인화성 등으로 친환경 초임계 용매인 초임계 이산화탄소(Supercritical carbon dioxide) 분위기 하에서 고분자 콜로이드 주형에 금속 알콕사이드를 코팅하는 방법으로 매크로 기공을 갖는 역 오팔(Inverse opals) 구조물을 합성하였다. 반응온도와 압력은 $40^{\circ}C$와 80 bar로 고정하였으며, 반응 시간과 반응물의 비율을 조절하여 역 오팔의 구조의 변화를 살펴보았다. 실험에는 금속 알콕사이드로써 Tetraethyl orthosilicate (TEOS)와 Titanium (IV) isopropoxide (TTIP)가 사용되었으며, 각각을 통하여 실리카와 타이타니아 역 오팔을 합성할 수 있었다.

Keywords

References

  1. Yang, S.-M., and Yi, G.-R., "Three-Dimensional (3D) Photonic Bandgap Crystals: Fabrication and Applications," Korean Chem. Eng. Res. (HWAHAK KONGHAK), 41(3), 277-285 (2003).
  2. Joannopoulos, J. D., Villeneuve, P. R., and Fan, S., "Photonic Crystals: Putting a New Twist on Light," Nature, 386, 143-149 (1997). https://doi.org/10.1038/386143a0
  3. Stein, A., and Schroden, R. C., "Colloidal Crystal Templating of Three-dimensionally Ordered Macroporous Solids: Materials for Photonics and Beyond," Curr. Opin. Solid State Mat. Sci., 5, 553 (2001). https://doi.org/10.1016/S1359-0286(01)00022-5
  4. Choi, B. G., Bae, G. J., and Hwang, Y., "Fabrication and Application of Nano-Colloid," Kisti, nanotechnology report No. 25, 2005.
  5. Sing, K. S., Everett, D. H., Haul, R. A. W., Moscou, L., Pierotti, R. A., Rouquerol, J., and Siemienewska, T., "Reporting Physisorption Data for Gas/solid Systems with Special Reference to the Determination of Surface Area and Porosity" Pure Appl. Chem., 57, 603-619 (1985). https://doi.org/10.1351/pac198557040603
  6. Moon, J. H., and Yang, S., "Chemical Aspects of Three-Dimensional Photonic Crystals," Chem. Rev. 110(1), 547-574 (2010). https://doi.org/10.1021/cr900080v
  7. King, J. S., Graugnard, E., and Summers, C. J., "$TiO_{2}$ Inverse Opals Fabricated Using Low-Temperature Atomic Layer Deposition," Adv. Mater., 17(8), 1010-1013 (2005). https://doi.org/10.1002/adma.200400648
  8. McHugh, M. A., and Krukonis, V. J., "Supercritical Fluid Extraction: Principles and Practice," Butterworths : Boston (1986).
  9. Sim, Y. S., Shim, J. J., and Ra C. S., "Synthesis of a Fluorene Carbonate from Fluorenyl Epoxide Using Supercritical Carbon Dioxde," Clean Technol., 16(4), 239-244 (2010).
  10. Spuhl, O., Herzog, S., Gross, J., Smirnova, I., and Arlt, W., "Reactive Phase Equilibria in Silica Aerogel Synthesis: Experimental Study and Prediction of the Complexphase Behavior Using the PC-SAFT Equation of State," Ind. Eng. Chem. Res., 43, 4457-4464 (2004). https://doi.org/10.1021/ie049893k
  11. Yu, H. M., Kim, A. R., Moon, J. H., Lim, J. S., and Choi, K. Y., "Stability of PS Opals in Supercritical Carbon Dioxide and Synthesis of Silica Inverse Opals," Bull. Korean Chem. Soc, 32(7), 2178-2182 (2011). https://doi.org/10.5012/bkcs.2011.32.7.2178
  12. Tomasko, D. L., Li, H., Liu, D., Han, X., Wingert, M. J., Lee, J. L., and Koelling, K. W., "A Review of $CO_{2}$Applications in the Processing of Polymers," Ind. Eng. Chem. Res., 42(25), 6431-6456 (2003). https://doi.org/10.1021/ie030199z
  13. Cabanas, A., Enciso, E., Carbajo, M. C., Torralvo, M. J., Pando, C., and Renuncio, J. A. R., "Synthesis of $SiO_{2}$-Aerogel Inverse Opals in Supercritical Carbon Dioxide," Chem. Mat., 17(24), 6139-6145 (2005).
  14. MA, Y., Chen, J-F., Ren, Y., and Tao, X., "Transition Metaldoped Titania Inverse Opals: Fabrication and Characterization," Colloids and Surfaces A : Physicochem. Eng. Aspects, 370, 129-135 (2010). https://doi.org/10.1016/j.colsurfa.2010.08.059