• Title/Summary/Keyword: Titanate powder

Search Result 99, Processing Time 0.024 seconds

Preparation of Core-Shell Structured BaTiO3 Powder Via Coating of Cr2O3 and Mn2O3 (Cr2O3 및 Mn2O3의 코팅에 의한 Core-Shell 구조의 BaTiO3 분말 제조)

  • Kwon, Byung-Soo;Lee, Hye-Un;Jang, Jung-Yoon;Lee, Sang-Kil;Chung, In Jae;Cho, Young-Sang;Park, Tae-Jin;Choi, Guang-Jin
    • Korean Chemical Engineering Research
    • /
    • v.46 no.1
    • /
    • pp.99-105
    • /
    • 2008
  • Core-shell structured $BaTiO_3$ powders were produced via nano-coating of $Cr_2O_3$ and $Mn_2O_3$ to barium titanate powder system for MLCCs. From preliminary experiments, the optimal solution reaction condition employing using $KMnO_4$, $K_2Cr_2O_4$ and sulfur was established. Not only powders of $Cr_2O_3$ and $Mn_2O_3$ were synthesized but also their coating on $BaTiO_3$ powders were peformed under the same reaction condition. The coating was carried out in two ways, one-step and two-step, and its results were characterized for comparison. Conclusively speaking, two oxide additives were coated onto the $BaTiO_3$ powder surface with high quality and excellent reaction yield even under mild condition, which indicates that the contents as well as the properties of additive shell layer can be precisely controlled with rather ease.

Preparation of Lead Titanate by Sol-Gel Method and Characteristic of Organic Acid Adsorption (졸겔법에 의한 티탄산납 제조 및 유기산 흡착특성)

  • Kim, Ju-Ho;Song, Jee-Hoon;Shin, Bo-Chul;Han, Sang-Oh;Song, Kun-Ho;Lee, Kwang-Rae
    • Journal of Industrial Technology
    • /
    • v.21 no.B
    • /
    • pp.133-139
    • /
    • 2001
  • Generally $PbTiO_3$ is manufactured in a form of thin films which is useful for the application of infrared sensors and non-volatile memory devices. Moreover $PbTiO_3$ has a characteristic of adsorption for organic acid as well as electronic property. Organic acid adsorption properties of $PbTiO_3$ powder prepared by sol-gel method was compared with the powder purchased from Aldrich Co. Crystallization and particle size of $PbTiO_3$ are influenced by process variables, such as dilution of sol solution, catalysis, calcination temperature, calcination time, etc. As the size of $PbTiO_3$ power decreased until several nanometers, adsorption of acetic acid and formic acid was increased 1.5-fold and 1.2-fold respectively.

  • PDF

Fabrication of Piezoelectric PZT Thick Film by Sol-gel Process (Sol-Gel 법에 의한 압전 PZT 후막의 제조)

  • Park, Jong-whan;Bang, Kook-soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.1
    • /
    • pp.94-99
    • /
    • 2015
  • Lead zirconate titanate (PZT) thick films with thicknesses of ㎛ were fabricated on silicon substrates using an aerosol deposition method. A PZT powder solution was prepared using a sol-gel process. The average diameters (d50) obtained were 1.67, 1.98, and 2.40μm when the pyrolysis temperatures were 300℃, 350℃, and 450℃ respectively. The as-deposited film had a uniform microstructure without any cracks or pores. The as-deposited films on silicon were annealed at a temperature of 700℃. The 20-㎛-thick PZT film showed good adherence between the PZT film and substrate, with no tearing observed in the conventional solid phase process. This was probably because the presence of pores produced from organic residue during annealing relieved the residual stresses in the deposited film.

Using Carboxylmethylated Cellulose as Water-Borne Binder to Enhance the Electrochemical Properties of Li4Ti5O12-Based Anodes

  • Liu, Lili;Cheng, Chongling;Liu, Hongjiang;Shi, Liyi;Wang, Dayang
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.315-320
    • /
    • 2015
  • The present work reports a systematic study of using carboxymethylated cellulose (CMC) as water-borne binder to produce $Li_4Ti_5O_{12}$-based anodes for manufacture of high rate performance lithium ion batteries. When the LTO-to-CB-to-CMC mass ratio is carefully optimized to be 8:1:0.57, the special capacity of the resulting electrodes is $144mAh{\cdot}g^{-1}$ at 10 C and their capacity retention was 97.7% after 1000 cycles at 1 C and 98.5% after 500 cycles at 5 C, respectively. This rate performance is comparable or even better than that of the electrolytes produced using conventional, organic, polyvinylidene fluoride binder.

MnO2 as an Effective Sintering Aid for Enhancing Piezoelectric Properties of (K,Na)NbO3 Ceramics

  • Jeong, Seong-Kyu;Hong, In-Ki;Do, Nam-Binh;Tran, Vu Diem Ngoc;Cho, Seong-Youl;Taib, Weon Pil;Lee, Jae-Shin
    • Journal of Powder Materials
    • /
    • v.17 no.5
    • /
    • pp.399-403
    • /
    • 2010
  • The effects of $MnO_2$ doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na)$NbO_3$ (KNN) ceramics have been investigated. $MnO_2$ was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.

Synthesis and Optical Property of BaTiO3 Nanoparticles Using a Salt-assisted Ultrasonic Spray Pyrolysis Process (염 보조 초음파 분무 열분해 공정을 이용한 BaTiO3 나노입자의 합성과 광학적 성질)

  • Hwangbo, Young;Lee, Young-In
    • Journal of Powder Materials
    • /
    • v.24 no.4
    • /
    • pp.326-331
    • /
    • 2017
  • The structural formation of inorganic nanoparticles dispersed in polymer matrices is a key technology for producing advanced nanocomposites with a unique combination of optical, electrical, and mechanical properties. Barium titanate ($BaTiO_3$) nanoparticles are attractive for increasing the refractive index and dielectric constant of polymer nanocomposites. Current synthesis processes for $BaTiO_3$ nanoparticles require expensive precursors or organic solvents, complicated steps, and long reaction times. In this study, we demonstrate a simple and continuous approach for synthesizing $BaTiO_3$ nanoparticles based on a salt-assisted ultrasonic spray pyrolysis method. This process allows the synthesis of $BaTiO_3$ nanoparticles with diameters of 20-50 nm and a highly crystalline tetragonal structure. The optical properties and photocatalytic activities of the nanoparticles show that they are suitable for use as fillers in various nanocomposites.

Synthesis of 100 nm BaTiO3 by Solid-state Reaction (고상법에 의한 100 nm BaTiO3 분말의 합성)

  • Kim, Jung-Hwan;Jung, Han-Seong;Cho, Joon-Yeob;Hong, Jeong-Oh;Kim, Young-Tae;Hur, Kang-Heon
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.2
    • /
    • pp.170-174
    • /
    • 2009
  • $BaTiO_3$ powder was synthesized by the solid-state reaction of fine $BaTiO_3$ and $TiO_2$ raw materials. Fine grinding media of 50 and 300 microns were used for obtaining fine particulate mixture of $BaTiO_3$ and $TiO_2$ with high homogeneity. Effect of the size of grinding media on the synthesis mechanism of $BaTiO_3$ was discussed on the basis of the particulate morphology and thermogravimetry data for the mixture powders. By using the finer grinding media, $BaTiO_3$ was formed at the lower temperature and the particle size with the relatively narrower distribution could be obtained. $BaTiO_3$ powder with the average size of 100 nm was synthesized by the solid reaction in vacuum atmosphere.

Fabrication of piezoelectric PZT thick film by aerosol deposition method (에어로졸 증착법에 의한 압전 PZT 후막의 제조)

  • Kim, Ki-Hoon;Bang, Kook-Soo;Park, Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.27 no.6
    • /
    • pp.95-99
    • /
    • 2013
  • Lead zirconate titanate (PZT) thick films with a thickness of $10-20{\mu}m$ were fabricated on silicone substrates using an aerosol deposition method. The starting powder, which had diameters of $1-2{\mu}m$, was observed using SEM. The average diameter ($d_{50}$) was $1.1{\mu}m$. An XRD analysis showed a typical perovskite structure, a mixture of the tetragonal phase and rhombohedral phase. The as-deposited film with nano-sized grains had a fairly dense microstructure without any cracks. The deposited film showed a mixture of an amorphous phase and a very fine crystalline phase by diffraction pattern analysis using TEM. The as-deposited films on silicon were annealed at a temperature of $700^{\circ}C$. A 20-${\mu}m$ thick PZT film was torn out as a result of the high compressive stress between the PZT film and substrate.

Effect of $BaTiO_3$ Powder Content on the Dielectric Constant of Epoxy/$BaTiO_3$ Composite Embedded Capacitor Films ($BaTiO_3$ 입자 함량이 에폭시/$BaTiO_3$ 복합 내장형 커패시터 필름의 유전상수에 미치는 영향)

  • Cho Sung-Dong;Lee Joo-Yeon;Hyun Jin-Gul;Lee Sang-Yong;Paik Kyung-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.2 s.31
    • /
    • pp.1-9
    • /
    • 2004
  • We investigated the effect of $BaTiO_3$ powder content on the dielectric constant of epoxy/$BaTiO_3$ composite embedded capacitor films (ECFs). Variations of the dielectric constant of epoxy/$BaTiO_3$ composite ECFs with unimodal $BaTiO_3$ powder content were measured. To explain this result, density of the ECFs was measured, and surface and cross section images of the ECFs were observed. In addition, variations of the dielectric constant of epoxy/$BaTiO_3$ composite ECFs with various bimodal combinations were measured. In the case of unimodal powder, the maximum dielectric constant was about 60 at $60\;vol\%$ S4 powder. And more powder addition lowered the dielectric constant of the ECFs, which was due to voids or pores formation by excess $BaTiO_3$ powder. In the case of bimodal combination, $75vol\%\;BaTiO_3$ powder loading and the dielectric constant of 90 were achieved using $S_5+C_1$ combination, biggest and smallest powder combination.

  • PDF

Highly donor-doped $Ba_{1-x}$$La_x$Ti$O_3$ ceramics

  • Korobova N.;Wha, Soh-Dea
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2003.05a
    • /
    • pp.374-377
    • /
    • 2003
  • Sol-gel processing of BaTiO$_3$ ceramics doped with La(0.01-1.00 at.%) were prepared from metal barium, titanium n-butoxide and lanthanum isopropoxide. Characterization of the sol-gel-derived powder using XRD, SEM is also reported. The obtained results suggested that insulator to semiconductor transition for highly donor-doped barium titanate was closely related to the incorporation of donor into the grains and to the resultant grain size, which were significantly affected by the sinterability of BaTiO$_3$ powders and sintering conditions used.

  • PDF