DOI QR코드

DOI QR Code

MnO2 as an Effective Sintering Aid for Enhancing Piezoelectric Properties of (K,Na)NbO3 Ceramics

  • Jeong, Seong-Kyu (School of Materials Science and Engineering, University of Ulsan) ;
  • Hong, In-Ki (School of Materials Science and Engineering, University of Ulsan) ;
  • Do, Nam-Binh (School of Materials Science and Engineering, University of Ulsan) ;
  • Tran, Vu Diem Ngoc (School of Materials Science and Engineering, University of Ulsan) ;
  • Cho, Seong-Youl (R&D Center, LHE Corp.) ;
  • Taib, Weon Pil (Ulsan Fine Chemical Industry Center, Ulsan Technopark) ;
  • Lee, Jae-Shin (School of Materials Science and Engineering, University of Ulsan)
  • Received : 2010.09.03
  • Accepted : 2010.10.01
  • Published : 2010.10.28

Abstract

The effects of $MnO_2$ doping on the crystal structure, ferroelectric, and piezoelectric properties of (K,Na)$NbO_3$ (KNN) ceramics have been investigated. $MnO_2$ was found to be effective in enhancing the densification and grain growth during sintering. X-ray diffraction analysis indicated that Mn ions substituted B-site Nb ions up to 2 mol%, however, further doping induced unwanted secondary phases. In comparison with undoped KNN ceramics, the well developed microstructure and the substitution to B-sites in 2 mol% Mn-doped KNN ceramics resulted in significant improvements in both piezoelectric coupling coefficient and electromechanical quality factor.

Keywords

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya and M. Nakamura: Nature, 432 (2004) 84. https://doi.org/10.1038/nature03028
  2. B. Jaffe, W. R. Cook and H. Jaffe: Piezoelectric Ceramics. Academic Press, New York (1971).
  3. L. Egerton and D. M. Dillon: J. Am. Ceram. Soc., 42 (1959) 438. https://doi.org/10.1111/j.1151-2916.1959.tb12971.x
  4. L. E. Cross: Nature, 181 (1958) 178. https://doi.org/10.1038/181178a0
  5. D. Lin, K. W. Kwok and H. L. W. Chan: J. Appl. Phys. Lett, 9 (2007) 232903.
  6. N. M. Hagh, K. Kerman, B. Jadidian and A. Safari: J. Eur. Cerm. Soc., 29 (2009) 2325. https://doi.org/10.1016/j.jeurceramsoc.2009.01.003
  7. M. Jiang, X. Li, J. Liu, J. Zhu, X. Zhu and L. Li: J. Alloy. and Comp., 479 (2009) 18. https://doi.org/10.1016/j.jallcom.2008.12.099
  8. J. Hao, Z. Xua, R. Chu, Y. Zhang, G. Li and Q. Yin: Mater. Chem. and Phys., 118 (2009) 229. https://doi.org/10.1016/j.matchemphys.2009.07.046
  9. D. Lin, K.W. Kwok and H. L. W. Chan: J. Alloy. and Comp., 461 (2008) 273. https://doi.org/10.1016/j.jallcom.2007.06.128
  10. D. Lin, M. S. Guo, K. H. Lam, K. W. Kwok and H. L. W. Chan: J. Smart. Mat. Struct., 17 (2008) 035002. https://doi.org/10.1088/0964-1726/17/3/035002
  11. B. C. Park, I. K. Hong, H. D. Jang, V. D. N. Tran, W. P. Tai and J. S. Lee: Mater. Lett., 64 (2010) 1577. https://doi.org/10.1016/j.matlet.2010.04.031
  12. ANSI/IEEE Standard No. 176-1987. New York (1987).
  13. R. Shannon: Acta. Cryst., 32 (1976) 751. https://doi.org/10.1107/S0567739476001551
  14. PCPDF card number 75-2159.
  15. PCPDF card number 31-1051.
  16. L. X. He and C. E. Li: J. Mat. Sci., 35 (2000) 2477. https://doi.org/10.1023/A:1004717702149
  17. G. H. Haerting: J. Am. Ceram. Soc., 50 (1967) 229.
  18. R. E. Jaeger and L. Egerton: J. Am. Ceram. Soc., 45 (1962) 209. https://doi.org/10.1111/j.1151-2916.1962.tb11127.x

Cited by

  1. Lead-Free Piezoceramics vol.99, pp.11, 2016, https://doi.org/10.1111/jace.14412