• Title/Summary/Keyword: Tire improvement

Search Result 75, Processing Time 0.033 seconds

Representative Evaluation of Topographical Characteristics of Road Surface for Tire Contact Force Analysis (노면 표면거칠기 특성의 대표값 정량화와 타이어 접촉력 해석 기법에 대한 고찰)

  • Seo, Beom Gyo;Sung, In-Ha
    • Tribology and Lubricants
    • /
    • v.33 no.6
    • /
    • pp.303-308
    • /
    • 2017
  • Most automobile tire companies have not yet considered the geometric information of a road at the design stage of a tire because the topographical characterization of a road surface is very difficult owing to its vastness and randomness. A road surface shows variable surface roughness values according to magnification, and thus, the contact force between the road and tire significantly fluctuates with respect to the scale. In this study, we make an attempt to define a representative value for surface topographical information at multi-scale levels. To represent surface topography, we use a statistical method called power spectral density (PSD). We use the fast Fourier transform (FFT) and PSD to analyze the height profiles of a random surface. The FFT and PSD of a surface help in obtaining a fractal dimension, which is a representative value of surface topography at all length scales. We develop three surfaces with different fractal dimensions. We use finite element analysis (FEA) to observe the contact forces between a tire and the road surfaces with three different fractal dimensions. The results from FEA reveal that an increase in the fractal dimension decreases the contact length between the tire and road surfaces. On the contrary, the average contact force increases. This result indicates that designing and manufacturing a tire considering the fractal dimension of a road makes safe driving possible, owing to the improvement in service life and braking performance of the tire.

Current Status of Tire Recycling in Taiwan

  • Shanshin Ton;Taipau Chia;Lee, Ming-Huang;Chien, Yeh-Chung;Shu, Hung-Yee
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.230-235
    • /
    • 2001
  • There are more than 15 millions cars or motors in Taiwan. According to the statistics from Environmental Protection Administration, the number of resulting scrap tires are near 110 thousand tons each year. The tire recycle programs in Taiwan were first conducted in 1989 and executed by ROC Scrap Tire Foundation. However, the current efficiency of the tire recycling industry still needs to be improved to minimize the environmental problem or fire hazards caused by scrap tires storage. Ten major tire-recycling factories are surveyed in this study. The investigations include the source of scrap tire, the shredding process, the market of products, the management of wastes disposal, and the difficulties of these sectors. As the varieties of the shredding machines of the recycle factories, there are three kinds of final products which include powder, granular, and chips. The wastes, wires and fibers, produced by the shredding process are the major problems fur all the factories. The percentage of the wire and fiber removal from rubbers still needs to be increased. The best approaches found in this study to increase the efficiency of scrap tire recycling processes are proposed which include the improvement of magnetic separation system fiber/rubber separation system and the minimization of waste disposal. A categorized standard of the processing outputs is suggested as a reference for the decision-making of the tire-recycling factories.

  • PDF

Mechanism of Cryogenic Shredding Process of Scrap Tire

  • Taipau Chia;Shanshin Ton;Shu, Hung-Yee;Chien, Yeh-chung;Lee, Ming-Huang
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.225-229
    • /
    • 2001
  • There are about 41% (by weight) of scrap tires were pulverized to produce rubber powder and granules in the tire recycling industry of Taiwan. However, the reuse of the by-products, steel and fiber, of the scrap tires still needs to be improved. It is difficult to remove the remaining rubber on the surface of steel or fiber. This problem reduce the availability for further reuse of steel and fiber. In addition to the improvement of magnetic, gravity separation techniques or carbonization process, using cryogenic shredding process to separate rubber and fiber (or steel) had been used as another alternative. Cryogenic shredding process for scrap tires showed many advantages, the objective of this paper is to explore the mechanisms for the cryogenic shredding process of scrap tires. Cryo-SEM is used to investigate the topographic information, in-situ, from room temperature to -195$^{\circ}C$ . One square inch shredded tire chips are prepared for SEM study. The percentage of the shrinkage of rubber is also estimated, ca. 6.7%. Mechanisms of cryogenic shredding effects on the tire chips are discussed. The proper practice of cryogenic shredding process far scrap tires is also suggested.

  • PDF

Maximum shear modulus of rigid-soft mixtures subjected to overconsolidation stress history

  • Boyoung Yoon;Hyunwook Choo
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.443-452
    • /
    • 2024
  • The use of sand-tire chip mixtures in construction industry is a sustainable and environmentally friendly approach that addresses both waste tire disposal and soil improvement needs. However, the addition of tire chip particles to natural soils decreases maximum shear modulus (Gmax), but increases compressibility, which can be potential drawbacks. This study examines the effect of overconsolidation stress history on the maximum shear modulus (Gmax) of rigid-soft mixtures with varying size ratios (SR) and tire chip contents (TC) by measuring the wave velocity through a 1-D compression test during loading and unloading. The results demonstrate that the Gmax of tested mixtures in the normally consolidated state increased with increasing SR and decreasing TC. However, the tested mixtures with a smaller SR exhibited a greater increase in Gmax during unloading because of the active pore-filling behavior of the smaller rubber particles and the consequent increased connectivity between sand particles. The SR-dependent impact of the overconsolidation stress history on Gmax was verified using the ratio between the swelling and compression indices. Most importantly, this study reveals that the excessive settlement and lower Gmax of rigid-soft mixtures can be overcome by introducing an overconsolidated state in sand-tire chip mixtures with low TC.

Development of Tread Buffing Machine for Recapped Tire for prevention of Musculoskeletal System disorder (근골격계 질환 예방을 위한 재생타이어 트레드 버핑머신 개발)

  • 김재열;한재호;이연신;김항우;오성민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.175-180
    • /
    • 2004
  • As a part of environmental pollution prevention and resources recycling, the regeneration of waste tire has been largely contributed to national industry. But, the worker has been evaded this regeneration process by reason of the best mischievous process condition among 3D industries. So, the first, the process condition of regenerating waste tire was analyzed. The second, the equipment or system was developed for the improvement of working strength and environment. The last, researchers intend to solve these problems

  • PDF

Development of GUI-based Program for Optimum Design of Double-ply Tire Sidewall Contour (Double-ply로 구성된 타이어 측벽형상 최적설계를 위한 GUI기반 프로그램 개발)

  • Shon, Jung-Sam;Cho, Jin-Rae;Yoo, Wan-Suk
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.525-530
    • /
    • 2004
  • In this paper, the optimum design of tire sidewall contour consisted of double plies for improving automobile maneuverability and tire durability is considered and a GUI program is developed for the purpose of the practical design. Each improvement of maneuverability and durability depends on the cord tension and strain energy distribution of tire sidewall. Satisfing trade-off method, which requires the judgment of aspiration levels, is used for the multi-objective optimization problem. Also, this paper presents the application to the practical sidewall contour design with the GUI program developed using visual Fortran.

  • PDF

Soil Stress State Determination Using a Ball-type Transducer (Ball형 측정기를 이용한 토중 응력 상태의 계측)

  • 전형규
    • Journal of Biosystems Engineering
    • /
    • v.29 no.4
    • /
    • pp.301-306
    • /
    • 2004
  • Soil stresses were measured beneath the centerline of one new 12.4R28 radial-ply tractor tire. The tire was operated with three inflation pressures(59㎪ 108㎪ and 157㎪) and a dynamic load of 14.2 kN and 20% slip. Soil stress state transducer(SST) measured the stresses in a hardpan soil profile. The depth of the SST was 250mm from soil surface. Analysis of the original soil stress data showed that the inflation pressure of tire did significantly affect the vertical stress. The major principal stresses calculated were more when the inflation pressure was 108㎪ than when it was 157㎪. The peak stresses of the major principal stresses presented more than those of the vertical stresses.

A Study on Effect Analysis and Design Optimization of Tire and ABS Logic for Vehicle Braking Performance Improvement (차량 제동성능 개선을 위한 타이어 인자 분석 및 최적설계에 대한 연구)

  • Ki, Won Yong;Lee, Gwang Woo;Heo, Seung Jin;Kang, Dae Oh;Kim, Ki Woon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.581-587
    • /
    • 2016
  • Braking is a basic and an important safety feature for all vehicles, and the final braking performance of a vehicle is determined by the vehicle's ABS performance and tire performance. However, the combination of excellent ABS and tires will not always ensure good braking performance. This is due to the fact that tire performance has non-linearity and uncertainty in predicting the repeated increase and decrease of wheel slip when activating the ABS, thus increasing the uncertainty of tire performance prediction. Furthermore, existing studies predicted braking performance after using an ABS that used a wheel slip control as a controller, which was different from an actual vehicle's ABS that controlled angular acceleration, therefore causing a decrease in the prediction accuracy of the braking performance. This paper reverse-designed the ABS that controlled angular acceleration based on the information on brake pressure, etc., which were obtained from vehicle tests, and established a braking performance prediction analysis model by combining a multi-body dynamics(MBD) vehicle model and a magic formula(MF) tire model. The established analysis model was verified after comparing it with the results of the braking tests of an actual vehicle. Using this analysis model, this study analyzed the braking effect by vehicle factor, and finally designed a tire that had optimized braking performance. As a result of this study, it was possible to design the MF tire model whose braking performance improved by 9.2 %.

High Performance Barrier Technologies for Tire Innerliner (타이어 인너라이너용 고차단화 기술)

  • Kang, Yong-Gu;Lee, Seong-Peal;Han, Min-Hyun
    • Elastomers and Composites
    • /
    • v.46 no.2
    • /
    • pp.102-111
    • /
    • 2011
  • The innerliner for a tire has excellent impermeability, air retention and good flex properties. The innerliner offers a role to improve performance parameter, such as air retention and tire durability that is of praricular importance for commercial tires. In order to improve the gas barrier properties of a innerliner, most of the innerliner rubbers, such as a halogenated butyl rubber(HIIR), brominated poly(isobutylene-co-isoprene)(BIIR), brominated polyisobutylene-co-paramethylstyrene(BIMS) are used as nanocomposites with nano fillers such as silicates, graphite etc. Innerliners based on nanocomposites may allow gauge adjustments and permeability reductions with potential improvement in tire durability. This article discusses potential innerliner permeablity reduction and compounding parameters on the properties of nanocomposite based innerliners.

Development of Tire Character Recognition and Compensation System Using the Kinect camera (키넥트 카메라를 이용한 타이어 문자 인식 및 보정 시스템 설계)

  • Kim, Gyu-Hyun;Jang, Jong-Wook
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.248-251
    • /
    • 2016
  • This thesis has discussed how to recognize and convert raised letters on tire to data and collect such data. Unlike the existing recognition system, the system presented by this thesis recognizes raised letters on tire through detecting letters after converting the Kinect camera image into image data in the preprocessing stage. After then, numbers and letters are analyzed through image improvement by use of binary images, noise filter, etc. In the recognition stage, letter distinction is used and raised letters on tire are recognized 100% through correction of errors by way of the correction algorithm for tire data recognition errors. In this paper it will be the development of a method of recognizing characters and the tire technology. Although there are many ways to the already recognized characters, Tire characters requires a technique different from the more general character recognition. For this reason and to develop additional technical methods and algorithms for character recognition.

  • PDF