• Title/Summary/Keyword: Tin-oxide ($SnO_2$)

Search Result 276, Processing Time 0.03 seconds

The Applications of Sol-Gel Derived Tin Oxide Thin Films

  • Park, Sung-Soon;John D. Mackenzie
    • The Korean Journal of Ceramics
    • /
    • v.2 no.1
    • /
    • pp.1-10
    • /
    • 1996
  • Transparent conducting $SnO_2$-based thin films have been coated on float substrates such as fused quartz, and ceramic fiber cloths such as the Nexel and E-glass cloth from tin alkoxides by the sol-gel technique. Also, thin films of alternating layers of $SnO_2$ and $SiO_2$ have been fabricated by dip coating. The sheet resistance and average visible transmittance of the films were investigated in the aspect of the applications as transparent electrodes such as liquid crystal displays, photo-detectors and solar cells. The Nextel and E-glass cloths coated with antimony-doped tin oxide (ATO) had sheet resistance of as low as $20 \;ohm/{\Box}$ and $120ohm/\;{\Box}$, respectively. The promotion effects of additives as $La_2O_3$ and Pt on the ethanol gas sensing properties of the films were investigated in the aspects of the applications as an alcohol sensor and a breath alcohol checker. Possible evidence of quantum well effects in the oxide multilayers of $SnO_2$ and $SiO_2$ was investigated.

  • PDF

Thermal Evaporation Syntheis and Luminescence Properties of SnO2 Nanocrystals using Mg as the Reducing Agent (Mg를 환원제로 사용하여 열증발법으로 합성한 SnO2 나노결정 및 발광 특성)

  • So, Ho-Jin;Lee, Geun-Hyoung
    • Korean Journal of Materials Research
    • /
    • v.30 no.7
    • /
    • pp.338-342
    • /
    • 2020
  • Tin oxide (SnO2) nanocrystals are synthesized by a thermal evaporation method using a mixture of SnO2 and Mg powders. The synthesis process is performed in air at atmospheric pressure, which makes the process very simple. Nanocrystals with a belt shape start to form at 900 ℃ lower than the melting point of SnO2. As the synthesis temperature increases to 1,100 ℃, the quantity of nanocrystals increases. The size of the nanocrystals did not change with increasing temperature. When SnO2 powder without Mg powder is used as the source material, no nanocrystals are synthesized even at 1,100 ℃, indicating that Mg plays an important role in the formation of the SnO2 nanocrystals at temperatures as low as 900 ℃. X-ray diffraction analysis shows that the SnO2 nanocrystals have a rutile crystal structure. The belt-shaped SnO2 nanocrystals have a width of 300~800 nm, a thickness of 50 nm, and a length of several tens of micrometers. A strong blue emission peak centered at 410 nm is observed in the cathodoluminescence spectra of the belt-shaped SnO2 nanocrystals.

Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target (SnO/Sn 혼합 타겟을 이용한 SnO 박막 제조 및 특성)

  • Kim, Cheol;Kim, Sungdong;Kim, Sarah Eunkyung
    • Korean Journal of Materials Research
    • /
    • v.26 no.4
    • /
    • pp.222-227
    • /
    • 2016
  • Tin oxides have been studied for various applications such as gas detecting materials, transparent electrodes, transparent devices, and solar cells. p-type SnO is a promising transparent oxide semiconductor because of its high optical transparency and excellent electrical properties. In this study, we fabricated p-type SnO thin film using rf magnetron sputtering with an SnO/Sn composite target; we examined the effects of various oxygen flow rates on the SnO thin films. We fundamentally investigated the structural, optical, and electrical properties of the p-type SnO thin films utilizing X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV/Vis spectrometry, and Hall Effect measurement. A p-type SnO thin film of $P_{O2}=3%$ was obtained with > 80% transmittance, carrier concentration of $1.12{\times}10^{18}cm^{-3}$, and mobility of $1.18cm^2V^{-1}s^{-1}$. With increasing of the oxygen partial pressure, electrical conductivity transition from p-type to n-type was observed in the SnO crystal structure.

Effect of Graphene Oxide Addition to Tin Oxide Aerogel for Photocatalytic Rhodamine B Degradation (주석산화물 에어로겔의 Graphene Oxide 첨가에 따른 광촉매적 Rhodamine B 분해)

  • Kim, Taehee;Choi, Haryeong;Kim, Younghun;Lee, Jihun;Park, Hyung-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.1
    • /
    • pp.61-66
    • /
    • 2021
  • SnO2 has the wide bandgap which allows it to be used as the photocatalyst. There are many studies to enhance the photocatalytic properties of SnO2. In this study, 3-dimensional SnO2 aerogel was synthesized using epoxide-initiated sol-gel method for the optimal specific surface area. Also, graphene oxide (GO) was added before the gelation process of the aerogel to maximize the specific surface area. Addition of 0.5 wt% of GO would possibly enhance the specific surface area by 1.7 times compared with the bare tin oxide aerogel. Furthermore, enhanced specific surface area could degrade 67.3% of initial Rhodamine B in 120 minutes. To compare with the bare SnO2 aerogel, 0.5 wt% GO addition to SnO2 could double the reaction rate of the photocatalytic degradation.

Effect of fluorine doping and heat treatment for SnO$_2$ thin films on electrical properties (SnO$_2$박막의 전기적 특성에 미치는 불소 doping및 열처리 효과)

  • 류득배;이수완;박정일;박광자
    • Journal of the Korean institute of surface engineering
    • /
    • v.33 no.2
    • /
    • pp.87-92
    • /
    • 2000
  • Transparent and electrical conducting tin oxide thin films were fabricated on soda lime silicate glass by thermal chemical vapour deposition technique. Thin films were deposition from mixtures of tetramethyltin (TMT) as a precursor, oxygen or oxygen containing ozone as an oxidant and 1,1,1,2-tetrafluoroethane as a doping material. Electrical properties of fabricated tin oxide films were changed depending on substrate temperature, and the amount of dopant. Resistivity of tin oxide films was reduced by doping fluorine or heat treatment. Thin films can be optimized at TMT flow rate of 8sccm, oxygen flow rate of 150sccm, 1,1,1,2-tetrafluoroethane floe rate of 300sccm and substrate temperature $380^{\circ}C$. In this conditions, the lowest resistivity of tin oxide films were $9$\times$10^{-4}$ $\Omega$cm.

  • PDF

Transparent Conducting Zinc-Tin-Oxide Layer for Application to Blue Light Emitting-diode

  • Kim, Do-Hyeon;Kim, Gi-Yong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.346.2-346.2
    • /
    • 2014
  • To use the GaN based light-emitting diodes (LEDs) as solid state lighting sources, the improvement of light extraction and internal quantum efficiency is essential factors for high brightness LEDs. In this study, we suggested the new materials system of a zinc tin oxide (ZTO) layer formed on blue LED epi-structures to improve the light extraction. ZTO is a representative n-type oxide material consisted of ZnO and SnO system. Moreover, ZTO is one of the promising oxide semiconductor material. Even though ZTO has higher chemical stability than IGZO owing to its SnO2 content this has high mobility and high reliability. After formation of ZTO layer on p-GaN layer by using the spin coating method, structural and optical properties are investigated. The x-ray diffraction (XRD) measurement results show the successful formation of ZTO. The photoluminescence (PL) and absorption spectrum shows that it has 3.6-4.1eV band gap. Finally, the light extraction properties of ZTO/LED chip using electroluminescence (EL) measurement were investigated. The experimental and theoretical analyses were simultaneously conducted.

  • PDF

A Study on the Fabrication and Characteristics of ITO thin Film Deposited by the Ionized Cluster Beam Deposition (Ionized Cluster Beam 증착방법을 이용한 Indium-Tin-Oxide(ITO) 박막의 제작과 그 특성에 관한 연구)

  • 최성창;황보상우;조만호;김남영;홍창의;이덕형;심태언;황정남
    • Journal of the Korean Vacuum Society
    • /
    • v.5 no.1
    • /
    • pp.54-61
    • /
    • 1996
  • Indium-tin oxide (ITO) films were deposited on the glass substrate by the reactive -ionized cluster beam deposition(ICBD) method. In the oxygen atmosphere, indium cluster formed through the nozzle is ionized by the electron bombardment and is accelerated to be deposited on the substrate. And tin is simultaneoulsy evaporated from the boron-nitride crucible. The chracteristics of films were examined by the X-ray photoelectron spectroscopy(XPS), glancing angle X-ray diffractrion(GXRD) and the electrical properties. were measured by 4-point-probe and Hall effect measurement system . From the XPS spectrum , it was found that indium and tin atoms combined with the oxygen to form oxide$(In_2O_3, SnO_2)$. In the case of films with high tin-concentration, the GXRD spectra show that the main $In_2O_3$ peak of (222) plane, but also sub peaks((440) peak etc.) and $SnO_2$ peaks were detected. From that results, itis concluded that the heavily dopped tin component (more than 14 at. %) disturbs to form $In_2O_3$(222) phase. Four-point-probe and Hall effect measurement show that, in the most desirable case, the transmittance of the films is more then 90% in visible range and its resistivity is $$\rho$=3.55 \times10^{-4}\Omega$cm and its mobility is $\mu$=42.8 $\textrm{cm}^2$/Vsec.

  • PDF

Characteristics of Tin Oxide Thin Film Grown by Atomic Layer Deposition and Spin Coating Process as Electron Transport Layer for Perovskite Solar Cells (원자층 증착법과 용액 공정법으로 성장한 전자 수송층 산화주석 박막의 페로브스카이트 태양전지 특성)

  • Ki Hyun Kim;Sung Jin Chung;Tae Youl Yang;Jong Chul Lim;Hyo Sik Chang
    • Korean Journal of Materials Research
    • /
    • v.33 no.11
    • /
    • pp.475-481
    • /
    • 2023
  • Recently, the electron transport layer (ETL) has become one of the key components for high-performance perovskite solar cell (PSC). This study is motivated by the nonreproducible performance of ETL made of spin coated SnO2 applied to a PSC. We made a comparative study between tin oxide deposited by atomic layer deposition (ALD) or spin coating to be used as an ETL in N-I-P PSC. 15 nm-thick Tin oxide thin films were deposited by ALD using tetrakisdimethylanmiotin (TDMASn) and using reactant ozone at 120 ℃. PSC using ALD SnO2 as ETL showed a maximum efficiency of 18.97 %, and PSC using spin coated SnO2 showed a maximum efficiency of 18.46 %. This is because the short circuit current (Jsc) of PSC using the ALD SnO2 layer was 0.75 mA/cm2 higher than that of the spin coated SnO2. This result can be attributed to the fact that the electron transfer distance from the perovskite is constant due to the thickness uniformity of ALD SnO2. Therefore ALD SnO2 is a candidate as a ETL for use in PSC vacuum deposition.

APCVD Process of SnO2 Thin-Film on Glass for Transparent Electrodes of Large-Scale Backplanes (대면적 기판의 투명 전극용 SnO2 박막 증착을 위한 APCVD 공정)

  • Kim, Byung-Kuk;Kim, Hyunsoo;Kim, Hyoung June;Park, Joonwoo;Kim, Yoonsuk;Park, Seungho
    • Transactions of the KSME C: Technology and Education
    • /
    • v.1 no.1
    • /
    • pp.7-12
    • /
    • 2013
  • Tin oxide thin-films have been widely applied in various fields of high-technology industries due to their excellent physical and electric properties. Those applications are found in various sensors, heating elements of windshield windows, solar cells, flat panel displays as tranparent electrodes. In this study, we conducted an experiment for the deposition of $SnO_2$ on glass of 2nd Gen. size for the effective development of large-scale backplanes. As deposition temperatures or flow rates of the $SnCl_4$ as a precursor changed, the thickness of tin oxide thin-films, their sheet resistances, transmittances, and hazes varied considerably.

Synthesis of Mesoporous Tin Oxide and Its Application as a Gas Sensor (메조세공을 갖는 이산화 주석의 합성 및 가스센서로서의 응용)

  • Kim, Nam-Hyon;Kim, Geon-Joong
    • Applied Chemistry for Engineering
    • /
    • v.18 no.2
    • /
    • pp.142-147
    • /
    • 2007
  • In this study, mesoporous tin oxide was synthesized by sol-gel method using $C_{16}TMABr$ surfactant as a template in a basic condition. The optimum conditions for the synthesis of mesoporous $SnO_2$ were investigated and the obtained samples were characterized by XRD, nitrogen adsorption and TEM analysis. A mesoporous and nanostructured $SnO_2$ gas sensor with Au electrode and Pt heater has been fabricated on alumina substrate as one unit via a screen printing process. Sensing abilities of fabricated sensors were examined for CO and $CH_4$ gases, respectively, at $350^{\circ}C$ in the concentration range of 1~10,000 ppm. Influence of loading amount of palladium impregnated on $SnO_2$ was also tested in detection of those gases. High sensitivity to detecting gases and the fast response speed with stability were obtained with the mesoporous tin oxide sensor as compared to a non-porous one under the same detection conditions.