DOI QR코드

DOI QR Code

APCVD Process of SnO2 Thin-Film on Glass for Transparent Electrodes of Large-Scale Backplanes

대면적 기판의 투명 전극용 SnO2 박막 증착을 위한 APCVD 공정

  • 김병국 ((주) 비아트론) ;
  • 김현수 ((주) 비아트론) ;
  • 김형준 ((주) 비아트론) ;
  • 박준우 (홍익대학교 기계시스템디자인공학과) ;
  • 김윤석 (홍익대학교 기계시스템디자인공학과) ;
  • 박승호 (홍익대학교 기계시스템디자인공학과)
  • Published : 2013.07.01

Abstract

Tin oxide thin-films have been widely applied in various fields of high-technology industries due to their excellent physical and electric properties. Those applications are found in various sensors, heating elements of windshield windows, solar cells, flat panel displays as tranparent electrodes. In this study, we conducted an experiment for the deposition of $SnO_2$ on glass of 2nd Gen. size for the effective development of large-scale backplanes. As deposition temperatures or flow rates of the $SnCl_4$ as a precursor changed, the thickness of tin oxide thin-films, their sheet resistances, transmittances, and hazes varied considerably.

$SnO_2$ (tin oxide) 박막은 물리적, 전기적 성질이 우수하여 첨단산업의 다양한 분야에서 널리 응용/개발되고 있다. 이의 응용대상은 다양한 센서, 윈드쉴드(windshield) 윈도우의 히팅 요소, 태양전지, flat panel diplay에서의 투명전극을 들 수 있다. 본 연구에서는 대면적 기판에 대한 APCVD 공정개발을 위하여 실험용 2세대 크기의 유리기판에 $SnO_2$ 박막증착 실험을 수행하였다. 증착 온도가 증가함에 따라 증착 두께가 두꺼워지고 이에 따라 면저항은 감소, 투과도는 감소, 연무도 (haze)는 증가함을 확인하였다. 증착을 위한 전구체인 $SnCl_4$의 유량이 증가함에 따라 증착 두께 역시 증가하고 이에 따라 면저항은 감소한다. 그러나 투과도와 연무도는 $SnCl_4$ 유량의 영향을 거의 받지 않는다는 것을 확인하였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Huang, X., Yu, Z., Huang, S., Zhang, Q., Li, D., Luo, Y. and Meng, Q., 2010, "Preparation of Fluorine-Doped Tin Oxide ($SnO_2$:F) Film on Polyethylene Terephthalate (PET) Substrate," Materials Letters, Vol. 64, No. 15, pp. 1701-1703. https://doi.org/10.1016/j.matlet.2010.05.001
  2. Ebisawa, J., Ando, E., "Solar Control Coating on Glass," Current Opinion in Solid State and Materials Science, Vol. 3, pp. 386-390.
  3. Lee, D.S., Kim, Y.T., Huh, J.S. and Lee, D.D., 2002, "Fabrication and Characteristics of $SnO_2$ Gas Sensor Array for Volatile Organic Compounds Recognition," Thin Solid Films, Vol. 416, pp. 271-278. https://doi.org/10.1016/S0040-6090(02)00619-3
  4. Ghoshtagore, R.N., 1978, "Mechanism of CVD thin film $SnO_2$ formation," Journal of the Electrochemical Society, Vol. 125, No. 1, pp. 110-117. https://doi.org/10.1149/1.2131373
  5. Xenidou, T.C., Boudouvis, A.G., Tsamakis, D.M. and Markatos, N.C., 2004, "An Experimentally Assisted Computational Analysis of Tin Oxide Deposition in a Cold-Wall APCVD Reactor," Journal of The Electrochemical Society, Vol. 151, No. 12, pp. C757-C764. https://doi.org/10.1149/1.1809592
  6. van Mol, A.M.B., Chae, Y., McDaniel, A.H. and Allendorf, M.D., 2006, "Chemical Vapor Deposition of Tin Oxide: Fundamentals and Applications," Thin Solid Films, Vol. 502, pp. 72-78. https://doi.org/10.1016/j.tsf.2005.07.247
  7. Karshoglu, R., Alp, A. and Akbulut, H., 2010, "The Effect of Substrate Temperature on the Microstructural Properties of Nanocrystalline Tin Oxide Coatings Produced by APCVD," Journal of Coatings Technology and Research, Vol. 7, No. 4, pp. 503-510. https://doi.org/10.1007/s11998-009-9208-y
  8. Karshoglu, R, Uysal, M. and Akbulut, H., 2011, "The Effect of Substrate Temperature on the Electrical and Optic Properties of Nanocrystalline Tin Oxide Coatings Produced by APCVD, Journal of Crystal Growth, Vol. 327, pp. 22-26. https://doi.org/10.1016/j.jcrysgro.2011.06.003
  9. Volintiru, I., de Graaf, A., van Deelen, J. and Poodt, P., 2011, "The Influence of Methanol Addition During the Film Growth of $SnO_2$ by Atmospheric Pressure Chemical Vapor Deposition," Thin Solid Films, Vol. 519, pp. 6258-6263. https://doi.org/10.1016/j.tsf.2011.03.125