• Title/Summary/Keyword: Timoshenko Beams

Search Result 179, Processing Time 0.025 seconds

Vibration and Stability of Tapered Timoshenko Beams on Two-Parameter Elastic Foundations (두 파라미터 탄성기초를 갖는 테이퍼진 티모센코 보의 진동 및 안정성)

  • 류봉조;임경빈;윤충섭;류두현
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1075-1082
    • /
    • 2000
  • The paper describes the vibration and stability of tapered beams on two-parameter elastic foundations. The two-parameter elastic foundations are constructed by distributed Winkler springs and a shearing layer as of ten used in soil models. The shear deformation and the rotatory inertia of a beam are taken into account. Governing equations are derived from energy expressions using Hamilton\`s principle. The associated eigenvalue problems are solved to obtain the free vibration frequencies or the buckling loads. Numerical results for the vibration of a beam with an axial force are presented and compared when other solutions are available. Vibration frequencies, mode shapes, and critical forces of a tapered Timoshenko beam on elastic foundations under an axial force are investigated for various thickness ratios, shear foundation parameters, Winkler foundation parameters and boundary conditions.

  • PDF

FE modeling of inelastic behavior of reinforced high-strength concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Structural Engineering and Mechanics
    • /
    • v.49 no.3
    • /
    • pp.373-393
    • /
    • 2014
  • A finite element model for predicting the entire nonlinear behavior of reinforced high-strength concrete continuous beams is described. The model is based on the moment-curvature relations pre-generated through section analysis, and is formulated utilizing the Timoshenko beam theory. The validity of the model is verified with experimental results of a series of continuous high-strength concrete beam specimens. Some important aspects of behavior of the beams having different tensile reinforcement ratios are evaluated. In addition, a parametric study is carried out on continuous high-strength concrete beams with practical dimensions to examine the effect of tensile reinforcement on the degree of moment redistribution. The analysis shows that the tensile reinforcement in continuous high-strength concrete beams affects significantly the member behavior, namely, the flexural cracking stiffness, flexural ductility, neutral axis depth and redistribution of moments. It is also found that the relation between the tensile reinforcement ratios at critical negative and positive moment regions has great influence on the moment redistribution, while the importance of this factor is neglected in various codes.

Wave propagation of CNTRC beams resting on elastic foundation based on various higher-order beam theories

  • Yi-Wen Zhang;Hao-Xuan Ding;Gui-Lin She;Abdelouahed Tounsi
    • Geomechanics and Engineering
    • /
    • v.33 no.4
    • /
    • pp.381-391
    • /
    • 2023
  • The aim of this work is to analyze and predict the wave propagation behavior of the carbon nanotube reinforced composites (CNTRC) beams within the framework of various higher order shear deformation beam theory. Using the Euler-Lagrange principle, the wave equations for CNTRC beams are derived, where the determining factor is to make the determinant equal to zero. Based on the eigenvalue method, the relationship between wave number and circular frequency is obtained. Furthermore, the phase and group velocities during wave propagation are obtained as a function of wave number, and the material properties of CNTRC beams are estimated by the mixture rule. In this paper, various higher order shear beam theory including Euler beam theory, Timoshenko beam theory and other beam theories are mainly adopted to analyze the wave propagation problem of the CNTRC beams, and by this way, we conduct a comparative analysis to verify the correctness of this paper. The mathematical model provided in this paper is verified numerically by comparing it with some existing results. We further investigate the effects of different enhancement modes of CNTs, volume fraction of CNTs, spring factor and other aspects on the wave propagation behaviors of the CNTRC beams.

Dynamic Analysis of Cracked Timoshenko Beams Using the Transfer Matrix Method (전달행렬법을 사용하여 균열이 있는 티모센코 보의 동특성 해석)

  • Kim, Jung Ho;Kwak, Jong Hoon;Lee, Jung Woo;Lee, Jung Youn
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.2
    • /
    • pp.179-186
    • /
    • 2016
  • This paper presents a numerical method that can evaluate the effect of crack for the in-plane bending vibration of Timoshenko beam. The method is a transfer matrix method that the element transfer matrix is deduced from the element dynamic stiffness matrix. An edge crack is expressed as a rotational spring, and then is formulated as an independent transfer matrix. To demonstrate the accuracy of this theory, the results computed from the present are compared with those obtained from the commercial finite element analysis program. Based on these comparison results, a parametric study is performed to analyze the effects for the size and locations of crack.

Dynamic modeling of nonlocal compositionally graded temperature-dependent beams

  • Ebrahimi, Farzad;Fardshad, Ramin Ebrahimi
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.1
    • /
    • pp.141-164
    • /
    • 2018
  • In this paper, the thermal effect on buckling and free vibration characteristics of functionally graded (FG) size-dependent Timoshenko nanobeams subjected to an in-plane thermal loading are investigated by presenting a Navier type solution for the first time. Material properties of FG nanobeam are supposed to vary continuously along the thickness according to the power-law form and the material properties are assumed to be temperature-dependent. The small scale effect is taken into consideration based on nonlocal elasticity theory of Eringen. The nonlocal equations of motion are derived based on Timoshenko beam theory through Hamilton's principle and they are solved applying analytical solution. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared to some cases in the literature. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of the several parameters such as thermal effect, material distribution profile, small scale effects, aspect ratio and mode number on the critical buckling temperature and normalized natural frequencies of the temperature-dependent FG nanobeams in detail. It is explicitly shown that the thermal buckling and vibration behaviour of a FG nanobeams is significantly influenced by these effects. Numerical results are presented to serve as benchmarks for future analyses of FG nanobeams.

Dynamic response of a Timoshenko beam on a tensionless Pasternak foundation

  • Coskun, Irfan;Engin, Hasan;Tekin, Ayfer
    • Structural Engineering and Mechanics
    • /
    • v.37 no.5
    • /
    • pp.489-507
    • /
    • 2011
  • The dynamic response of a Timoshenko beam on a tensionless Pasternak foundation is investigated by assuming that the beam is subjected to a concentrated harmonic load at its middle. This action results in the creation of lift-off regions between the beam and the foundation that effect the character of the response. Although small displacements for the beam and the foundation are assumed, the problem becomes nonlinear since the contact/lift-off regions are not known at the outset. The governing equations of the beam, which are coupled in deflection and rotation, are obtained in both the contact and lift-off regions. After removing the coupling, the essentials of the problem (the contact regions) are determined by using an analytical-numerical method. The results are presented in figures to demonstrate the effects of some parameters on the extent of the contact lengths and displacements. The results are also compared with those of Bernoulli-Euler, shear, and Rayleigh beams. It is observed that the solution is not unique; for a fixed value of the frequency parameter, more than one solution (contact length) exists. The contact length of the beam increases with the increase of the frequency and rotary-inertia parameters, whereas it decreases with increasing shear foundation parameter.

Vibration Analysis of Pre-twisted Blades with Functionally Graded Material Properties Based on Timoshenko Beam Theory (티모센코 보 이론에 따른 초기 비틀림각을 갖는 경사기능재 블레이드의 진동 해석)

  • Yoo, Hong Hee;Oh, Yutaek
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.285-287
    • /
    • 2014
  • Equations of motion for the vibration analysis of rotating pre-twisted beams with functionally graded material properties are derived in this paper. Based on Timoshenko beam theory, the effects of shear and rotary inertia are considered. The pre-twisted beam has a rectangular cross-section and is mounted on a rotating rigid hub with a setting angle. Functionally graded material (FGM) properties are considered along the height direction of the beam. The equations of stretching and bending motion are derived by Kane's method employing hybrid deformation variables. To validate the derived equations, natural frequencies of a rotating FGM pre-twisted beam are compared to those obtained by a commercial software ANSYS. The effects of the pre-twisted angle, slenderness ratio, hub radius, volume fraction exponent, and angular speed on the modal characteristics of the system are investigated with the proposed model.

  • PDF

Effect of non-uniform temperature distributions on nonlocal vibration and buckling of inhomogeneous size-dependent beams

  • Ebrahimi, Farzad;Salari, Erfan
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.377-397
    • /
    • 2018
  • In the present investigation, thermal buckling and free vibration characteristics of functionally graded (FG) Timoshenko nanobeams subjected to nonlinear thermal loading are carried out by presenting a Navier type solution. The thermal load is assumed to be nonlinear distribution through the thickness of FG nanobeam. Thermo-mechanical properties of FG nanobeam are supposed to vary smoothly and continuously throughout the thickness based on power-law model and the material properties are assumed to be temperature-dependent. Eringen's nonlocal elasticity theory is exploited to describe the size dependency of nanobeam. Using Hamilton's principle, the nonlocal equations of motion together with corresponding boundary conditions based on Timoshenko beam theory are obtained for the thermal buckling and vibration analysis of graded nanobeams including size effect. Moreover, in following a parametric study is accompanied to examine the effects of the several parameters such as nonlocal parameter, thermal effect, power law index and aspect ratio on the critical buckling temperatures and natural frequencies of the size-dependent FG nanobeams in detail. According to the numerical results, it is revealed that the proposed modeling can provide accurate frequency results of the FG nanobeams as compared some cases in the literature. Also, it is found that the small scale effects and nonlinear thermal loading have a significant effect on thermal stability and vibration characteristics of FG nanobeams.

Static deflection of nonlocal Euler Bernoulli and Timoshenko beams by Castigliano's theorem

  • Devnath, Indronil;Islam, Mohammad Nazmul;Siddique, Minhaj Uddin Mahmood;Tounsi, Abdelouahed
    • Advances in nano research
    • /
    • v.12 no.2
    • /
    • pp.139-150
    • /
    • 2022
  • This paper presents sets of explicit analytical equations that compute the static displacements of nanobeams by adopting the nonlocal elasticity theory of Eringen within the framework of Euler Bernoulli and Timoshenko beam theories. Castigliano's theorem is applied to an equivalent Virtual Local Beam (VLB) made up of linear elastic material to compute the displacements. The first derivative of the complementary energy of the VLB with respect to a virtual point load provides displacements. The displacements of the VLB are assumed equal to those of the nonlocal beam if nonlocal effects are superposed as additional stress resultants on the VLB. The illustrative equations of displacements are relevant to a few types of loadings combined with a few common boundary conditions. Several equations of displacements, thus derived, matched precisely in similar cases with the equations obtained by other analytical methods found in the literature. Furthermore, magnitudes of maximum displacements are also in excellent agreement with those computed by other numerical methods. These validated the superposition of nonlocal effects on the VLB and the accuracy of the derived equations.

Vibration analysis of double-walled carbon nanotubes based on Timoshenko beam theory and wave propagation approach

  • Emad Ghandourah;Muzamal Hussain;Amien Khadimallah;Abdulsalam Alhawsawi;Essam Mohammed Banoqitah;Mohamed R. Ali
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.521-525
    • /
    • 2023
  • This paper concerned with the vibration of double walled carbon nanotubes (CNTs) as continuum model based on Timoshenko-beam theory. The vibration solution obtained from Timoshenko-beam theory provides a better presentation of vibration structure of carbon nanotubes. The natural frequencies of double-walled CNTs against half axial wave mode are investigated. The frequency decreases on decreasing the half axial wave mode. The shape of frequency arcs is different for various lengths. It is observed that model has produced lowest results for C-F and highest for C-C. A large parametric study is performed to see the effect of half axial wave mode on frequencies of CNTs. This numerically vibration solution delivers a benchmark results for other techniques. The comparison of present model is exhibited with previous studies and good agreement is found.