• Title/Summary/Keyword: Timoshenko Beams

Search Result 179, Processing Time 0.021 seconds

Free vibration analysis of laminated composite beam under room and high temperatures

  • Cunedioglu, Yusuf;Beylergil, Bertan
    • Structural Engineering and Mechanics
    • /
    • v.51 no.1
    • /
    • pp.111-130
    • /
    • 2014
  • The aim of this study is to investigate the effects of the beam aspect ratio(L/h), hole diameter, hole location and stacking layer sequence ($[0/45/-45/90]_s$, $[45/0/-45/90]_s$ and $[90/45/-45/0]_s$) on natural frequencies of glass/epoxy perforated beams under room and high (40, 60, 80, and $100^{\circ}C$) temperatures for the common clamped-free boundary conditions (cantilever beam). The first three out of plane bending free vibration of symmetric laminated beams is studied by Timoshenko's first order shear deformation theory. For the numerical analyses, ANSYS 13.0 software package is utilized. The results show that the hole diameter, stacking layer sequence and hole location have important effect especially on the second and third mode natural frequency values for the short beams and the high temperatures affects the natural frequency values significantly. The results are presented in tabular and graphical form.

An inverse hyperbolic theory for FG beams resting on Winkler-Pasternak elastic foundation

  • Sayyad, Atteshamuddin S.;Ghugal, Yuwaraj M.
    • Advances in aircraft and spacecraft science
    • /
    • v.5 no.6
    • /
    • pp.671-689
    • /
    • 2018
  • Bending, buckling and free vibration responses of functionally graded (FG) higher-order beams resting on two parameter (Winkler-Pasternak) elastic foundation are studied using a new inverse hyperbolic beam theory. The material properties of the beam are graded along the thickness direction according to the power-law distribution. In the present theory, the axial displacement accounts for an inverse hyperbolic distribution, and the transverse shear stress satisfies the traction-free boundary conditions on the top and bottom surfaces of the beams. Hamilton's principle is employed to derive the governing equations of motion. Navier type analytical solutions are obtained for the bending, bucking and vibration problems. Numerical results are obtained to investigate the effects of power-law index, length-to-thickness ratio and foundation parameter on the displacements, stresses, critical buckling loads and frequencies. Numerical results by using parabolic beam theory of Reddy and first-order beam theory of Timoshenko are specially generated for comparison of present results and found in excellent agreement with each other.

Geometrically nonlinear analysis of functionally graded porous beams

  • Akbas, Seref D.
    • Wind and Structures
    • /
    • v.27 no.1
    • /
    • pp.59-70
    • /
    • 2018
  • In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.

Multifield Variational Finite Element Sectional Analysis of Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • Composites Research
    • /
    • v.30 no.6
    • /
    • pp.343-349
    • /
    • 2017
  • A multifield variational formulation is developed for the finite element (FE) cross-sectional analysis of composite beams. The cross-sectional warping displacements and sectional stresses are considered to be the primary variables through the application of Reissner's partially mixed principle. The warping displacements are modeled using generic FE shape functions with nonlinear distribution over the beam section. A generalized Timoshenko level stiffness matrix is derived which incorporates the effects of elastic couplings, transverse shear, and Poisson's deformations. The accuracy of the present analysis is validated for the stiffness constants and elastostatic responses of composite box beams which correlate well with the experimental data and other state-of-the-art approaches.

Effect of Three-dimensional Warping on Stiffness Constants of Closed Section Composite Beams

  • Dhadwal, Manoj Kumar;Jung, Sung Nam
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.467-473
    • /
    • 2017
  • This paper focuses on the investigation of three-dimensional (3D) warping effect on the stiffness constants of composite beams with closed section profiles. A finite element (FE) cross-sectional analysis is developed based on the Reissner's multifield variational principle. The 3D in-plane and out-of-plane warping displacements, and sectional stresses are approximated as linear functions of generalized sectional stress resultants at the global level and as FE shape functions at the local sectional level. The classical elastic couplings are taken into account which include transverse shear and Poisson deformation effects. A generalized Timoshenko level $6{\times}6$ stiffness matrix is computed for closed section composite beams with and without warping. The effect of neglecting the 3D warping on stiffness constants is shown to be significant indicating large errors as high as 93.3%.

Stochastic vibration analysis of functionally graded beams using artificial neural networks

  • Trinh, Minh-Chien;Jun, Hyungmin
    • Structural Engineering and Mechanics
    • /
    • v.78 no.5
    • /
    • pp.529-543
    • /
    • 2021
  • Inevitable source-uncertainties in geometry configuration, boundary condition, and material properties may deviate the structural dynamics from its expected responses. This paper aims to examine the influence of these uncertainties on the vibration of functionally graded beams. Finite element procedures are presented for Timoshenko beams and utilized to generate reliable datasets. A prerequisite to the uncertainty quantification of the beam vibration using Monte Carlo simulation is generating large datasets, that require executing the numerical procedure many times leading to high computational cost. Utilizing artificial neural networks to model beam vibration can be a good approach. Initially, the optimal network for each beam configuration can be determined based on numerical performance and probabilistic criteria. Instead of executing thousands of times of the finite element procedure in stochastic analysis, these optimal networks serve as good alternatives to which the convergence of the Monte Carlo simulation, and the sensitivity and probabilistic vibration characteristics of each beam exposed to randomness are investigated. The simple procedure presented here is efficient to quantify the uncertainty of different stochastic behaviors of composite structures.

A unified consistent couple stress beam theory for functionally graded microscale beams

  • Chih-Ping Wu;Zhen Huang
    • Steel and Composite Structures
    • /
    • v.51 no.2
    • /
    • pp.103-116
    • /
    • 2024
  • Based on the consistent couple stress theory (CCST), we develop a unified formulation for analyzing the static bending and free vibration behaviors of functionally graded (FG) microscale beams (MBs). The strong forms of the CCST-based Euler-Bernoulli, Timoshenko, and Reddy beam theories, as well as the CCST-based sinusoidal, exponential, and hyperbolic shear deformation beam theories, can be obtained by assigning some specific shape functions of the shear deformations varying through the thickness direction of the FGMBs in the unified formulation. The above theories are thus included as special cases of the unified CCST. A comparative study between the results obtained using a variety of CCST-based beam theories and those obtained using their modified couple stress theory-based counterparts is carried out. The impacts of some essential factors on the deformation, stress, and natural frequency parameters of the FGMBs are examined, including the material length-scale parameter, the aspect ratio, and the material-property gradient index.

An Experimental Study of Buckling Behavior in Built-up Compression Member with Unsymmetric Connectors II - Effect of Type of Connection Members - (비대칭 연결재를 갖는 조립식 압축부재의 좌굴 거동에 관한 실험 연구 II - 연결재 종류의 영향 -)

  • Kang, Sanghoon;Han, Manyop;Cho, Byeongdu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.4A
    • /
    • pp.217-225
    • /
    • 2012
  • Structural behavior of built-up compression members with unsymmetric connectors under buckling status has been studied through these experiments. When the distance between adjacent H-300 beams of built-up compression member is 2 m in length, and the H-300 beams are lengthened up to 30 m in length with three-10 m-H-beams by bolts and double arrayed, three specimen having each connector plate, single channel, double channel are experimented for evaluating buckling loads. The buckling loads from the experiments are compared with buckling loads of structural analysis using FEM and buckling loads of Timoshenko Eq. in order to figure out how the connectors' type affects on longitudinal and lateral displacements, also strain of the built-up compression members as well. The result from the experiments show that the buckling loads 4.2% decreases in double channel connectors and 36.6% decreases in single channel connectors than plate connectors.

Experimental Investigations of Relationships between Resonance Frequencies and Elastic Moduli of Composite Materials by Impulse Excitation Method (Impulse Excitation Method에 의한 복합재료의 공진 주파수와 탄성계수 관계에 대한 실험적 고찰)

  • Kim, Hyeong-Sam;Lee, Jae-Hyeok;Lee, Dong-Sik;Park, Se-Man
    • Korean Journal of Materials Research
    • /
    • v.8 no.9
    • /
    • pp.843-848
    • /
    • 1998
  • The Usages of composite materials have been steadily on the rise in the industries of automobiles, air crafts, shipbuilding and other structures for transportations. Commonly required in those industries are light weight and high strength of the structures. Consequently, serious efforts in research have been focused on searching for light materials and on developments and characterizations of advanced substitutes including various kinds of composite materials. In this investigation, transversely isotropic composite materials are chosen and formed into two kinds of beams; Euler-Bernoulli beam(thin team) and Timoshenko beam(thick beam) for determinations of elastic constants. As an experimental technique Impulse Excitation Method is utilized to measure resonance frequencies of the beams of the composite materials in vibration tests. Elastic constants are evaluated from measured resonance frequencies for the two types of beams to observe and establish possible existence of effects of rotary inertia and shear deformations.

  • PDF

A spectrally formulated finite element method for vibration of a tubular structure

  • Horr, A.M.;Schmidt, L.C.
    • Structural Engineering and Mechanics
    • /
    • v.4 no.3
    • /
    • pp.209-226
    • /
    • 1996
  • One of the major divisions in the mathematical modelling of a tubular structure is to include the effect of the transverse shear stress and rotary inertia in vibration of members. During the past three decades, problems of vibration of tubular structures have been considered by some authors, and special attention has been devoted to the Timoshenko theory. There have been considerable efforts, also, to apply the method of spectral analysis to vibration of a structure with rectangular section beams. The purpose of this paper is to compare the results of the spectrally formulated finite element analyses for the Timoshenko theory with those derived from the conventional finite element method for a tubular structure. The spectrally formulated finite element starts at the same starting point as the conventional finite element formulation. However, it works in the frequency domain. Using a computer program, the proposed formulation has been extended to derive the dynamic response of a tubular structure under an impact load.