Browse > Article
http://dx.doi.org/10.12989/was.2018.27.1.059

Geometrically nonlinear analysis of functionally graded porous beams  

Akbas, Seref D. (Department of Civil Engineering, Bursa Technical University, Yildirim Campus)
Publication Information
Wind and Structures / v.27, no.1, 2018 , pp. 59-70 More about this Journal
Abstract
In this paper, geometrically non-linear analysis of a functionally graded simple supported beam is investigated with porosity effect. The material properties of the beam are assumed to vary though height direction according to a prescribed power-law distributions with different porosity models. In the nonlinear kinematic model of the beam, the total Lagrangian approach is used within Timoshenko beam theory. In the solution of the nonlinear problem, the finite element method is used in conjunction with the Newton-Raphson method. In the study, the effects of material distribution such as power-law exponents, porosity coefficients, nonlinear effects on the static behavior of functionally graded beams are examined and discussed with porosity effects. The difference between the geometrically linear and nonlinear analysis of functionally graded porous beam is investigated in detail. Also, the effects of the different porosity models on the functionally graded beams are investigated both linear and nonlinear cases.
Keywords
geometrically nonlinear analysis; functionally graded material; porosity; total Lagragian; finite element method;
Citations & Related Records
Times Cited By KSCI : 29  (Citation Analysis)
연도 인용수 순위
1 Agarwal, S., Chakraborty, A. and Gopalakrishnan, S. (2006), "Large deformation analysis for anisotropic and inhomogeneous beams using exact linear static solutions", Compos. Struct., 72(1), 91-104.   DOI
2 Akbarzadeh Khorshidi, M., Shariati, M. and Emam, S.A. (2016), "Postbuckling of functionally graded nanobeams based on modified couple stress theory under general beam theory", Int. J. Mech. Sci., 110(1), 160-169.   DOI
3 Akbas, S.D. and Kocaturk, T. (2012), "Post-buckling analysis of Timoshenko beams with temperature-dependent physical properties under uniform thermal loading", Struct. Eng. Mech., 44(1), 109-125.   DOI
4 Akbas, S.D. and Kocaturk, T. (2013), "Post-buckling analysis of functionally graded three-dimensional beams under the influence of temperature", J. Therm. Stresses, 36(12), 1235-1254.
5 Akbas, S.D. (2013a), "Geometrically nonlinear static analysis of edge cracked Timoshenko beams composed of functionally graded material", Math. Probl. Eng., 2013, 14.
6 Akbas, S.D. (2013b), "Free vibration characteristics of edge cracked functionally graded beams by using finite element method", Int. J. Eng. Trends Technol., 4(10), 4590-4597.
7 Akbas, S.D. (2014a), "Large post-buckling behavior of Timoshenko beams under axial compression loads", Struct. Eng. Mech., 51(6), 955-971.   DOI
8 Akbas, S.D. (2014b), "Free vibration of axially functionally graded beams in thermal environment", Int. J. Eng. Appl. Sci., 6(3), 37-51.
9 Akbas, S.D. (2015a), "On post-buckling behavior of edge cracked functionally graded beams under axial loads", Int. J. Struct. Stab. Dynam., 15(4), 1450065.   DOI
10 Akbas, S.D. (2015b), "Post-buckling analysis of axially functionally graded three dimensional beams", Int. J. Appl. Mech., 7(3), 1550047.   DOI
11 Akbas, S.D. (2015a), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1).
12 Akbas, S.D. (2015b), "Large deflection analysis of edge cracked simple supported beams", Struct. Eng. Mech., 54(3), 433-451.   DOI
13 Akbas, S.D. (2015c), "Wave propagation of a functionally graded beam in thermal environments", Steel Compos. Struct., 19(6), 1421-1447.   DOI
14 Akbas, S.D. (2015d), "Free vibration and bending of functionally graded beams resting on elastic foundation", Res. Eng. Struct. Mater., 1(1).
15 Akbas, S.D. (2017d), "Vibration and static analysis of functionally graded porous plates", J. Appl. Comput. Mech., 3(3), 199-207.
16 Akbas, S.D. (2017a), "Free vibration of edge cracked functionally graded microscale beams based on the modified couple stress theory", Int. J. Struct. Stab. Dynam., 17(3), 1750033.   DOI
17 Akbas, S.D. (2017b), "Forced vibration analysis of functionally graded nanobeams", Int. J. Appl. Mech., 9(7), 1750100.   DOI
18 Akbas, S.D. (2017c), "Post-buckling responses of functionally graded beams with porosities", Steel Compos. Struct., 24(5), 579-589.   DOI
19 Akbas, S.D. (2017e), "Nonlinear static analysis of functionally graded porous beams under thermal effect", Coupled Syst. Mech., 6(4), 399-415.   DOI
20 Akbas, S.D. (2017f), "Stability of a non-homogenous porous plate by using generalized differantial quadrature method", Int. J. Eng. Appl. Sci., 9(2), 147-155.
21 Akbas, S.D. (2017g), "Thermal effects on the vibration of functionally graded deep beams with porosity", Int. J. Appl. Mech., 9(5), 1750076.   DOI
22 Akbas, S.D. (2018a), "Forced vibration analysis of functionally graded porous deep beams", Compos. Struct., 186, 293-302.   DOI
23 Akbas, S.D. (2018b), "Geometrically nonlinear analysis of a laminated composite beam", Struct. Eng. Mech., 66(1), 27-36.   DOI
24 Akbas, S.D. (2018c), "Post-buckling responses of a laminated composite beam", Steel Compos. Struct., 26(6), 733-743.   DOI
25 Al Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205.   DOI
26 Atmane, H.A., Tounsi, A., Bernard, F. and Mahmoud, S.R. (2015a), "A computational shear displacement model for vibrational analysis of functionally graded beams with porosities", Steel Compos. Struct., 19(2), 369-384.   DOI
27 Almeida, C.A., Albino, J.C.R., Menezes, I.F.M. and Paulino, G.H. (2011), "Geometric nonlinear analyses of functionally graded beams using a tailored Lagrangian formulation", Mech. Res. Commun., 38(8), 553-559.   DOI
28 Amara, K., Bouazza, M. and Fouad, B. (2016), "Postbuckling analysis of functionally graded beams using nonlinear model", Periodica Polytechnica. Eng., Mech. Eng., 60(2), 121-128.   DOI
29 Anandrao, K.S., Gupta, R.K., Ramchandran, P. and Rao, V. (2010), "Thermal post-buckling analysis of uniform slender functionally graded material beams", Struct. Eng. Mech., 36(5), 545-560.   DOI
30 Atmane, H.A., Tounsi, A. and Bernard, F. (2015b), "Effect of thickness stretching and porosity on mechanical response of a functionally graded beams resting on elastic foundations", Int. J. Mech. Mater. Des., 13(1), 71-84.
31 Babilio, E. (2014), "Dynamics of functionally graded beams on viscoelastic foundation", Int. J. Struct. Stab. Dynam., 14(8), 1440014, Doi: 10.1142/S0219455414400148.   DOI
32 Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38, 265-275.   DOI
33 Benferhat, R., Daouadji, T.H., Mansour, M.S. and Hadji, L. (2016a), "Effect of porosity on the bending and free vibration response of functionally graded plates resting on Winkler-Pasternak foundations", Earthq. Struct., 10(6), 1429-1449.   DOI
34 Ebrahimi, F. and Salari, E. (2015b), "Size-dependent thermoelectrical buckling analysis of functionally graded piezoelectric nanobeams", Smart Mater. Struct., 24(12), 125007.   DOI
35 Benferhat, R., Hassaine, D., Hadji, L. and Said, M. (2016b), "Static analysis of the FGM plate with porosities", Steel Compos. Struct., 21(1), 123-136.   DOI
36 Ebrahimi, F., Salari, E. and Hosseini, S.A.H. (2015), "Thermomechanical vibration behavior of FG nanobeams subjected to linear and non-linear temperature distributions", J. Therm. Stresses, 38(12), 1360-1386.   DOI
37 Ebrahimi, F. and Salari, E. (2015a), "Effect of various thermal loadings on buckling and vibrational characteristics of nonlocal temperature-dependent FG nanobeams", Mech. Adv. Mater. Struct., 1-58.
38 Ebrahimi, F. and Salari, E. (2015), "A semi-analytical method for vibrational and buckling analysis of functionally graded nanobeams considering the physical neutral axis position", CMES Comput Model Eng Sci, 105(2), 151-181
39 Ebrahimi, F. and Jafari, A. (2016a), "A higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities", J. Eng., 2016, 20.
40 Ebrahimi, F. and Jafari, A. (2016b), "Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory", Struct. Eng. Mech., 59(2), 343-371.   DOI
41 Ebrahimi, F. Ghasemi, F. and Salari, E. (2016), "Investigating thermal effects on vibration behavior of temperature-dependent compositionally graded Euler beams with porosities", Meccanica, 51(1), 223-249.   DOI
42 Ebrahimi, F. and Habibi, S. (2016), "Deflection and vibration analysis of higher-order shear deformable compositionally graded porous plate", Steel Compos. Struct., 20(1), 205-225.   DOI
43 Ebrahimi, F. and Barati, M.R. (2016c), "Small scale effects on hygro-thermo-mechanical vibration of temperature dependent nonhomogeneous nanoscale beams", Mech. Adv. Mater. Struct., 24(11), 924-936.
44 Ebrahimi, F. and Farzamandnia, N. (2016), "Thermo-mechanical vibration analysis of sandwich beams with functionally graded carbon nanotube-reinforced composite face sheets based on a higher-order shear deformation beam theory", Mech. Adv. Mater. Struct., 1-37
45 Ebrahimi, F. and Barati, M.R. (2016a), "Dynamic modeling of a thermo-piezo-electrically actuated nanosize beam subjected to a magnetic field", Appl. Phys. A, 122(4), 1-18.
46 Ebrahimi, F. and Barati, M.R. (2016b), "Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment", J. Vib. Control, 1077546316646239.
47 Ebrahimi, F. and Hosseini, S.H.S. (2016), "Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates", J. Therm. Stresses, 39(5), 606-625.   DOI
48 Elmaguiri, M., Haterbouch, M., Bouayad, A. and Oussouaddi, O. (2015), "Geometrically nonlinear free vibration of functionally graded beams", J. Mater. Environ. Sci., 6(12), 3620-3633.
49 Fallah, A. and Aghdam, M.M. (2011), "Nonlinear free vibration and post-buckling analysis of functionally graded beams on nonlinear elastic foundation", Eur. J. Mech.-A/Solids, 30(4), 571-583.   DOI
50 Felippa, C.A. (2017), "Notes on nonlinear finite element methods",url:http://www.colorado.edu/engineering/cas/courses.d/NFEM.d/NFEM.Ch11.d/NFEM.Ch11.pdf.
51 Galeban, M.R., Mojahedin, A., Taghavi, Y. and Jabbari, M. (2016), "Free vibration of functionally graded thin beams made of saturated porous materials", Steel Compos. Struct., 21(5), 999-1016.   DOI
52 Hadji, L. (2017), "Analysis of functionally graded plates using a sinusoidal shear deformation theory", Smart Struct. Syst., 19(4), 441-448.   DOI
53 Hadji, L. and Bedia, E.A.A. (2015), "Influence of the porosities on the free vibration of FGM beams", Wind Struct., 21(3) 273-287.   DOI
54 Hadji, L., Daouadji, T.H. and Bedia, E.A. (2015), "A refined exponential shear deformation theory for free vibration of FGM beam with porosities", Geomech. Eng., 9(3), 361-372.   DOI
55 Hadji, L., Khelifa, Z. and Adda Bedia, E.A. (2016), "A new higher order shear deformation model for functionally graded beams", KSCE J. Civil Eng., 20(5), 1835-1841.   DOI
56 Hadji, L., Zouatnia, N. and Kassoul, A. (2017), "Wave propagation in functionally graded beams using various higher-order shear deformation beams theories", Struct. Eng. Mech., 62(2), 143-149.   DOI
57 Hosseini, M. and Fazelzadeh, S.A. (2011), "Thermomechanical stability analysis of functionally graded thin-walled cantilever pipe with flowing fluid subjected to axial load", Int. J. Struct. Stab. Dynam., 11(3), 513-534.   DOI
58 Hui-Shen, S. and Wang, Z.X. (2014), "Nonlinear analysis of shear deformable FGM beams resting on elastic foundations in thermal environments", Int. J. Mech. Sci., 81, 195-206.   DOI
59 Jahwari, F. and Naguib, H.E. (2016), "Analysis and homogenization of functionally graded viscoelastic porous structures with a higher order plate theory and statistical based model of cellular distribution", Appl. Math. Model., 40(3), 2190-2205.   DOI
60 Kolakowski, Z. and Teter, A. (2015), "Static interactive buckling of functionally graded columns with closed cross-sections subjected to axial compression", Compos. Struct., 123(1), 257-262.   DOI
61 Kocaturk, T. and Akbas, S.D. (2010), "Geometrically non-linear static analysis of a simply supported beam made of hyperelastic material", Struct. Eng. Mech., 35(6), 677-697.   DOI
62 Kang, Y.A. and Li, X.F. (2009), "Bending of functionally graded cantilever beam with power-law non-linearity subjected to an end force", Int. J. Nonlinear Mech., 44(6), 696-703.   DOI
63 Kang, Y.A. and Li, X.F., (2010), "Large deflections of a non-linear cantilever functionally graded beam", J. Reinf. Plast. Comp., 29(12), 1761-1774.   DOI
64 Ke, L.L., Yang, J. and Kitipornchai, S. (2009), "Postbuckling analysis of edge cracked functionally graded Timoshenko beams under end shortening", Compos. Struct., 90(2), 152-160.   DOI
65 Kocaturk, T. and Akbas, S.D. (2011), "Post-buckling analysis of Timoshenko beams with various boundary conditions under non-uniform thermal loading", Struct. Eng. Mech., 40(3), 347-371.   DOI
66 Kocaturk, T., Simsek, M. and Akbas, S.D. (2011), "Large displacement static analysis of a cantilever Timoshenko beam composed of functionally graded material", Sci. Eng. Compos. Mater., 18, 21-34.
67 Kocaturk, T. and Akbas, S.D. (2012), "Post-buckling analysis of Timoshenko beams made offunctionally graded material under thermal loading". Struct. Eng. Mech., 41(6), 775-789.   DOI
68 Kocaturk, T. and Akbas, S.D. (2013), "Thermal post-buckling analysis of functionally graded beams with temperaturedependent physical properties", Steel Compos. Struct., 15(5), 481-505.   DOI
69 Li, S.R., Zhang, J.H. and Zhao, Y.G. (2006), "Thermal postbuckling of functionally graded material Timoshenko beams", Appl. Math. Mech., (English Edition), 26(6), 803-810.
70 Li, Q. and Li, S. (2011), "Post-bucking configuration of a functionally graded material column under distributed load", Fuhe Cailiao Xuebao(Acta Materiae Compositae Sinica), 28(3), 192-196.
71 Li, L.Q. and Shao, Q.H. (2014), "Non-linear analysis of a FGM cantilever beam supported on a winkler elastic foundation", Appl. Mech. Mater., 602, 131-134.
72 Mechab, I., Mechab, B., Benaissa, S., Serier, B. and Bouiadjra, B.B. (2016a), "Free vibration analysis of FGM nanoplate with porosities resting on Winkler Pasternak elastic foundations based on two-variable refined plate theories", J. Braz. Soc. Mech. Sci. Eng., 38, 2193-2211.   DOI
73 Mechab, B., Mechab, I., Benaissa, S., Ameri, M. and Serier, B. (2016b), "Probabilistic analysis of effect of the porosities in functionally graded material nanoplate resting on Winkler-Pasternak elastic foundations", Appl. Math. Model., 40(2), 738-749.   DOI
74 Mohanty, S.C., Dash, R.R. and Rout, T. (2012), "Static and dynamic stability analysis of a functionally graded Timoshenko beam", Int. J. Struct. Stab. Dynam., 12(4) Article ID 1250025, 33 pages.
75 Mouaici, F., Benyoucef, S., Atmane, H.A. and Tounsi, A. (2016), "Effect of porosity on vibrational characteristics of nonhomogeneous plates using hyperbolic shear deformation theory", Wind Struct., 22(4), 429-454.   DOI
76 Nguyen, D.K., Gan, B.S. and Trinh, T.H. (2014), "Geometrically nonlinear analysis of planar beam and frame structures made of functionally graded material", Struct. Eng. Mech., 49(6) 727-743.   DOI
77 Rastgo, A., Shafie, H. and Allahverdizadeh, A. (2005), "Instability of curved beams made of functionally graded material under thermal loading", Int. J. Mech. Mater. Des., 2, 117-128.   DOI
78 Simsek, M. and Aydin, M. (2017), "Size-dependent forced vibration of an imperfect functionally graded (FG) microplate with porosities subjected to a moving load using the modified couple stress Theory", Compos. Struct., 160, 408-421.   DOI
79 Song, X. and Li, S. (2008), "Nonlinear stability of fixed-fixed FGM arches subjected to mechanical and thermal loads", Adv. Mater. Res., 33-37, 699-706.   DOI
80 Sun, Y., Li, S.R. and Batra, R.C. (2016), "Thermal buckling and post-buckling of FGM mTimoshenko beams on nonlinear elastic foundation", J. Therm. Stresses, 39(1), 11-26.   DOI
81 Trinh, T.H., Nguyen, D.K., Gan, B.S. and Alexandrov, S. (2016), "Post-buckling responses of elastoplastic FGM beams on nonlinear elastic foundation", Struct. Eng. Mech., 58(3), 515-532.   DOI
82 Wattanasakulpong, N. and Ungbhakorn, V. (2014), "Linear and nonlinear vibration analysis of elastically restrained ends FGM beams with porosities", Aerosp. Sci. Technol., 32(1), 111-120.   DOI
83 Yahia, S.A., Atmane, H.A., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165.   DOI
84 Yan, T., Yang, J. and Kitipornchai, S. (2012), "Nonlinear dynamic response of an edge-cracked functionally graded Timoshenko beam under parametric excitation", Nonlinear Dynam., 67(1), 527-540.   DOI
85 Zhang, D.G. and Zhou, H.M. (2014), "Nonlinear bending and thermal post-buckling analysis of FGM beams resting on nonlinear elastic foundations", CMES Comput. Model. Eng., 100(3) 201-222.
86 Zouatnia, N., Hadji, L. and Kassoul, A. (2017), "An analytical solution for bending and vibration responses of functionally graded beams with porosities", Wind Struct., 25(4), 329-342.