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Abstract

This paper focuses on the investigation of three-dimensional (3D) warping effect on the stiffness constants of composite 

beams with closed section profiles. A finite element (FE) cross-sectional analysis is developed based on the Reissner's multifield 

variational principle. The 3D in-plane and out-of-plane warping displacements, and sectional stresses are approximated as 

linear functions of generalized sectional stress resultants at the global level and as FE shape functions at the local sectional 

level. The classical elastic couplings are taken into account which include transverse shear and Poisson deformation effects. A 

generalized Timoshenko level 6×6 stiffness matrix is computed for closed section composite beams with and without warping. 

The effect of neglecting the 3D warping on stiffness constants is shown to be significant indicating large errors as high as 93.3%.
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1. Introduction

In recent decades, a significant amount of research effort 

has been devoted to the accurate and efficient analysis of 

composite beams with various levels of refinements. Beams 

can be simply described as slender structures with one 

dimension much larger than the other two. In helicopters 

or wind turbines, they are primarily used to model and 

analyze rotor blades which are typically made of composite 

materials. These blades may exhibit various passive elastic 

couplings which can be favorable for the desired global 

behavior. A full 3D analysis of rotor blades requires extensive 

modeling and heavy computation. The alternative approach 

which is usually adopted is to decompose 3D beam analysis 

into a local two-dimensional (2D) sectional analysis and a 

global one-dimensional (1D) beam analysis [1]. The local 2D 

sectional analysis is a crucial step which involves treatment 

of classical elastic couplings, and nonclassical effects due to 

3D warping displacements and boundary restraints. These 

effects are essential for accurate computation of sectional 

elastic properties which can be used to perform 1D beam 

static or dynamic analyses [2]. The proper recovery of 3D 

displacements, strains, and stresses is strongly dependent on 

the 2D sectional and 1D global beam analyses.

Several experimental as well as computational studies 

on the composite beams and blades can be found in the 

literature. The computational works can primarily be 

classified into analytical or FE based methods. Chandra 

and Chopra [3] studied experimentally and analytically the 

behavior of composite beams and blades. Berdichevsky 

et al. [4] proposed a variational asymptotic approach to 

refine the displacement approximations using an analytical 

based method. Jung et al. [2] developed an analytical 

shell-wall approach based on mixed force-displacement 

method including the effects of transverse shear and 

torsional restraints. Although the analytical shell-wall based 

approaches provide simple closed-form solutions, they are 

limited to thin- or thick-walled beams. A FE based analysis is 

applicable to arbitrary geometries and therefore more suited 

to generic beam sections. Giavotto et al. [5] proposed a FE 

analysis based on Saint-Venant (SV) central solutions without 

end effects along with extremity solutions using eigenmodes 

for end effects. Cesnik and Hodges [6] formulated a FE 

cross-sectional analysis called the variational asymptotic 
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beam sectional analysis (VABS) based on the variational 

asymptotic method of Berdichevsky [7]. Kim and Kim [8] 

proposed a cross-sectional formulation based on a mixed 

variational principle with an asymptotic treatment of the 

stress field. They derived a Timoshenko-Vlasov level stiffness 

model considering transverse shear deformations and 

torsional restraint effects. Recently, a generalized refined 

displacement-based sectional analysis was proposed by 

Dhadwal and Jung [9] taking into account the 3D warping 

displacements and the boundary restraint effects due to 

nonuniform shear and torsional warping.

The present formulation is developed following the 

Reissner's multifield variational principle [10]. The proposed 

formulation is implemented into a FE program which is 

applicable for nonhomogeneous anisotropic beams with 

arbitrary geometries and material distributions. The unique 

features of the present formulation are: (a) the 3D warping 

displacements and transverse sectional stresses are modeled 

as unknown field variables. The other stress components 

are computed using Hooke's law and represented in terms 

of displacement derivatives in the kinematic relations; 

and (b) the 3D warping displacements and transverse 

sectional stresses are approximated as linear functions 

of generalized stress resultants (due to extension, shear, 

torsion, and bending) at the global beam level, and using 

FE shape functions at the local sectional level. This results 

in a generic nonlinear distribution of both 3D warping and 

reactive stresses over the beam cross-section. The present 

formulation incorporates the classical elastic couplings as 

well as nonclassical couplings due to transverse shear and 

Poisson’s deformations. A 6×6 generalized stiffness matrix 

is subsequently obtained which incorporates Timoshenko-

like model for transverse shear. The elastic constants are 

then computed considering the cases with and without the 

3D warping. Note that the present multifield cross-sectional 

formulation is independent of the 1D beam analysis in 

that only stiffness constants are required to be provided 

to the latter which is similar to the displacement-based 

formulations. The importance of warping deformations for 

correct prediction of stiffness constants is investigated for 

elastically coupled composite beams with closed section 

profiles.

2. Multifield Beam Formulation

A brief description of the present formulation is discussed 

first. The beam is considered to be straight and prismatic. 

The volume of the beam can be described by extruding the 

cross-section along the reference line, which is an arbitrary 

curve in space. The beam reference line is aligned along ξ1 

axis. The schematic of the beam section is shown in Fig. 1.

2.1 Semi-inverted material constitutive relations

The constitutive relations for a linear elastic material in the 

material coordinate system can be defined using generalized 

Hooke’s law as

4 

The constitutive relations for a linear elastic material in the material coordinate system can be 

defined using generalized Hooke's law as 

𝜎𝜎𝑚𝑚 = 𝐂𝐂𝑚𝑚𝜀𝜀𝑚𝑚  (1) 

where 𝜎𝜎𝑚𝑚 is the stress vector, 𝜀𝜀𝑚𝑚 is the strain vector, and 𝐂𝐂𝑚𝑚 is the material elastic constants 

matrix which may be fully populated for anisotropic materials. The constitutive relations in the beam 

coordinate system can be obtained by transforming the material coordinate system aligned along the 

fiber direction (3, see Fig. 1) and the fiber plane coordinate system based from the fiber orientation 

angle (1, see Fig. 1). 

For the application of Reissner's multifield variational principle, the stresses and strains are 

expressed in a semi-inverted form through decomposition into sectional stresses acting on the beam 

section (normal and transverse shear stresses) and stresses acting on the planes normal to the beam 

section (normal and in-plane shear stresses), which gives 

{𝜀𝜀𝑠𝑠
𝑟𝑟

𝜎𝜎𝑛𝑛𝑎𝑎
} = [ 𝐂̅𝐂𝑠𝑠𝑠𝑠 𝐂̅𝐂𝑠𝑠𝑠𝑠

−𝐂̅𝐂𝑠𝑠𝑠𝑠𝑇𝑇 𝐂̅𝐂𝑛𝑛𝑛𝑛
] {𝜎𝜎𝑠𝑠

𝑟𝑟

𝜀𝜀𝑛𝑛𝑎𝑎
}  (2) 

where the subscript s indicates the sectional stresses, subscript n represents the stresses on the planes 

normal to the beam section, the superscript a indicates the active components computed directly using 

Hooke’s law, the superscript r indicates the reactive components, and 𝐂̅𝐂𝑠𝑠𝑠𝑠, 𝐂̅𝐂𝑠𝑠𝑠𝑠, 𝐂̅𝐂𝑛𝑛𝑛𝑛 are the modified 

constitutive matrices. 

 

2.2 Kinematics 

The displacements u of an arbitrary material point on the beam section are defined as the sum of 

rotational and translational displacements 𝐮𝐮𝑏𝑏 and the sectional warping displacements Ψ, given as 

𝐮𝐮 = 𝐮𝐮𝑏𝑏 + Ψ  (3) 

with 

𝐮𝐮𝑏𝑏 = 𝐁𝐁𝐁𝐁,    𝐪𝐪 = ⌊𝐮𝐮0𝑇𝑇 Φ𝑇𝑇⌋𝑇𝑇   

𝐁𝐁 = [
1 0 0 0 𝜉𝜉3 −𝜉𝜉2
0 1 0 −𝜉𝜉3 0 0
0 0 1 𝜉𝜉2 0 0

]  (4) 

, (1)

where σm is the stress vector, εm is the strain vector, and 

Cm is the material elastic constants matrix which may be 

fully populated for anisotropic materials. The constitutive 

relations in the beam coordinate system can be obtained 

by transforming the material coordinate system aligned 

along the fiber direction (θ3, see Fig. 1) and the fiber plane 

coordinate system based from the fiber orientation angle (θ1, 

see Fig. 1).

For the application of Reissner's multifield variational 

principle, the stresses and strains are expressed in a semi-

inverted form through decomposition into sectional stresses 

acting on the beam section (normal and transverse shear 

stresses) and stresses acting on the planes normal to the 

beam section (normal and in-plane shear stresses), which 

gives
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where q represents the generalized beam displacements 

consisting of translations vector u0 and rotations vector Φ of 

the beam section.

The warping field is six times redundant which can be 

treated applying constraints defined in [9] as
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1 0 0 0 𝜕𝜕/𝜕𝜕𝜉𝜉3 −𝜕𝜕/𝜕𝜕𝜉𝜉2
0 1 0 −𝜕𝜕/𝜕𝜕𝜉𝜉3 0 𝜕𝜕/𝜕𝜕𝜉𝜉1
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 (6) 

Assuming small strains and small local rotations, the linear strain-displacement relations can be 

obtained as 

𝜀𝜀𝑠𝑠
𝑎𝑎 = 𝐁𝐁Γ + ℒ𝑠𝑠Ψ + Ψ′,    𝜀𝜀𝑛𝑛

𝑎𝑎 = ℒ𝑛𝑛Ψ  (7) 

where Γ = ℒ𝑞𝑞𝐪𝐪 + 𝐪𝐪′ represents generalized strain measures, ()′ denotes derivative with respect to 

axial coordinate 𝜉𝜉1, and matrices ℒ𝑠𝑠, ℒ𝑛𝑛, ℒ𝑞𝑞 are respectively given as 

ℒ𝑠𝑠 = [
0 0 0

𝜕𝜕/𝜕𝜕𝜉𝜉2 0 0
𝜕𝜕/𝜕𝜕𝜉𝜉3 0 0

] , ℒ𝑛𝑛 = [
0 𝜕𝜕/𝜕𝜕𝜉𝜉2 0
0 0 𝜕𝜕/𝜕𝜕𝜉𝜉3
0 𝜕𝜕/𝜕𝜕𝜉𝜉3 𝜕𝜕/𝜕𝜕𝜉𝜉2

]  

ℒ𝑞𝑞 =

[
 
 
 
 
 0 0 0 0 0 0
0 0 0 0 0 −1
0 0 0 0 1 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0 ]

 
 
 
 
 

  (8) 

The warping and reactive stress fields can be discretized using isoparametric shape functions as 
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where Dψ is the warping constraints matrix.

2.3 Governing equations

The present work considers sectional stresses to be 

unknowns in addition to displacements and employs 

variational principle to derive governing equations which 

leads to a multifield variational formulation. The variation of 

total energy per unit length δΠR of the beam can be stated as
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The last term is a byproduct of the present multifield formulation which corresponds to the strain 

compatibility condition acting 𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟 as Lagrange multipliers. The sectional stress resultants can be 

defined using tractions over the beam section 𝜎𝜎𝑠𝑠 as given by 

𝐅𝐅 = ∫ 𝐁𝐁𝑇𝑇𝜎𝜎𝑠𝑠𝐴𝐴 𝑑𝑑𝑑𝑑 (15) 

where 𝐅𝐅 = ⌊𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3⌋𝑇𝑇  with 𝐹𝐹1  as the extensional force, 𝐹𝐹2  and 𝐹𝐹3  as the 

transverse shear forces, 𝑀𝑀1 as the torsional moment, and 𝑀𝑀2 and 𝑀𝑀3 as the bending moments. 

Neglecting the surface and body forces, the external work per unit length 𝑊𝑊𝑠𝑠 is given as 

𝑊𝑊𝑠𝑠 = ∫ (𝐮𝐮𝑇𝑇𝜎𝜎𝑠𝑠)′𝐴𝐴 𝑑𝑑𝑑𝑑 (16) 

Using Eqs. (3), (4) and (15), and the definition of generalized strain measures Γ, the variation of 

external work 𝛿𝛿𝑊𝑊𝑠𝑠 is obtained as 

𝛿𝛿𝑊𝑊𝑠𝑠 = ∫ [(𝛿𝛿Ψ′)𝑇𝑇𝜎𝜎𝑠𝑠 + 𝛿𝛿Ψ𝑇𝑇(𝜎𝜎𝑠𝑠)′]𝐴𝐴 𝑑𝑑𝑑𝑑  

. (14)

The last term is a byproduct of the present multifield 

formulation which corresponds to the strain compatibility 

condition acting δσs
r as Lagrange multipliers. The sectional 

stress resultants can be defined using tractions over the 

beam section σs as given by

6 

2.3 Governing equations 

The present work considers sectional stresses to be unknowns in addition to displacements and 

employs variational principle to derive governing equations which leads to a multifield variational 

formulation. The variation of total energy per unit length 𝛿𝛿Π𝑅𝑅 of the beam can be stated as 

𝛿𝛿Π𝑅𝑅 = 𝛿𝛿𝑈𝑈𝑠𝑠 − 𝛿𝛿𝑊𝑊𝑠𝑠 = 0  (11) 

where 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of sectional strain energy and 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of external work on 

the beam section due to applied loads. The sectional strain energy 𝑈𝑈𝑠𝑠 can be defined in terms of 

Reissner’s semi-complimentary energy functional Φ𝑅𝑅 [10] as 

𝑈𝑈𝑠𝑠 = ∫ [Φ𝑅𝑅 + (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]𝐴𝐴 𝑑𝑑𝑑𝑑  (12) 

where Φ𝑅𝑅 is given as 

Φ𝑅𝑅 = 1
2 [(𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 − (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]  (13) 

The reactive strains 𝜀𝜀𝑠𝑠𝑟𝑟 obtained from semi-inverted material constitutive relations and active strains 

𝜀𝜀𝑠𝑠𝑎𝑎 computed from kinematical relations should be compatible, which implies 𝜀𝜀𝑠𝑠𝑟𝑟 = 𝜀𝜀𝑠𝑠𝑎𝑎. The first 

variation of sectional strain energy can then be obtained from Eq. (12) as 

𝛿𝛿𝑈𝑈𝑠𝑠 = ∫ [(𝛿𝛿𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 + (𝛿𝛿𝜀𝜀𝑠𝑠𝑎𝑎)𝑇𝑇𝜎𝜎𝑠𝑠𝑟𝑟 + (𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇(𝜀𝜀𝑠𝑠𝑎𝑎 − 𝜀𝜀𝑠𝑠𝑟𝑟)]𝐴𝐴 𝑑𝑑𝑑𝑑 (14) 

The last term is a byproduct of the present multifield formulation which corresponds to the strain 

compatibility condition acting 𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟 as Lagrange multipliers. The sectional stress resultants can be 

defined using tractions over the beam section 𝜎𝜎𝑠𝑠 as given by 

𝐅𝐅 = ∫ 𝐁𝐁𝑇𝑇𝜎𝜎𝑠𝑠𝐴𝐴 𝑑𝑑𝑑𝑑 (15) 

where 𝐅𝐅 = ⌊𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3⌋𝑇𝑇  with 𝐹𝐹1  as the extensional force, 𝐹𝐹2  and 𝐹𝐹3  as the 

transverse shear forces, 𝑀𝑀1 as the torsional moment, and 𝑀𝑀2 and 𝑀𝑀3 as the bending moments. 

Neglecting the surface and body forces, the external work per unit length 𝑊𝑊𝑠𝑠 is given as 

𝑊𝑊𝑠𝑠 = ∫ (𝐮𝐮𝑇𝑇𝜎𝜎𝑠𝑠)′𝐴𝐴 𝑑𝑑𝑑𝑑 (16) 

Using Eqs. (3), (4) and (15), and the definition of generalized strain measures Γ, the variation of 

external work 𝛿𝛿𝑊𝑊𝑠𝑠 is obtained as 

𝛿𝛿𝑊𝑊𝑠𝑠 = ∫ [(𝛿𝛿Ψ′)𝑇𝑇𝜎𝜎𝑠𝑠 + 𝛿𝛿Ψ𝑇𝑇(𝜎𝜎𝑠𝑠)′]𝐴𝐴 𝑑𝑑𝑑𝑑  

, (15)

where F=[F1  F2  F3  M1  M2  M3)T with F1 as the extensional 

force, F2 and F3 as the transverse shear forces, M1 as the 

torsional moment, and M2 and M3 as the bending moments. 

Neglecting the surface and body forces, the external work per 

unit length Ws is given as

6 

2.3 Governing equations 

The present work considers sectional stresses to be unknowns in addition to displacements and 

employs variational principle to derive governing equations which leads to a multifield variational 

formulation. The variation of total energy per unit length 𝛿𝛿Π𝑅𝑅 of the beam can be stated as 

𝛿𝛿Π𝑅𝑅 = 𝛿𝛿𝑈𝑈𝑠𝑠 − 𝛿𝛿𝑊𝑊𝑠𝑠 = 0  (11) 

where 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of sectional strain energy and 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of external work on 

the beam section due to applied loads. The sectional strain energy 𝑈𝑈𝑠𝑠 can be defined in terms of 

Reissner’s semi-complimentary energy functional Φ𝑅𝑅 [10] as 

𝑈𝑈𝑠𝑠 = ∫ [Φ𝑅𝑅 + (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]𝐴𝐴 𝑑𝑑𝑑𝑑  (12) 

where Φ𝑅𝑅 is given as 

Φ𝑅𝑅 = 1
2 [(𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 − (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]  (13) 

The reactive strains 𝜀𝜀𝑠𝑠𝑟𝑟 obtained from semi-inverted material constitutive relations and active strains 

𝜀𝜀𝑠𝑠𝑎𝑎 computed from kinematical relations should be compatible, which implies 𝜀𝜀𝑠𝑠𝑟𝑟 = 𝜀𝜀𝑠𝑠𝑎𝑎. The first 

variation of sectional strain energy can then be obtained from Eq. (12) as 

𝛿𝛿𝑈𝑈𝑠𝑠 = ∫ [(𝛿𝛿𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 + (𝛿𝛿𝜀𝜀𝑠𝑠𝑎𝑎)𝑇𝑇𝜎𝜎𝑠𝑠𝑟𝑟 + (𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇(𝜀𝜀𝑠𝑠𝑎𝑎 − 𝜀𝜀𝑠𝑠𝑟𝑟)]𝐴𝐴 𝑑𝑑𝑑𝑑 (14) 

The last term is a byproduct of the present multifield formulation which corresponds to the strain 

compatibility condition acting 𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟 as Lagrange multipliers. The sectional stress resultants can be 

defined using tractions over the beam section 𝜎𝜎𝑠𝑠 as given by 

𝐅𝐅 = ∫ 𝐁𝐁𝑇𝑇𝜎𝜎𝑠𝑠𝐴𝐴 𝑑𝑑𝑑𝑑 (15) 

where 𝐅𝐅 = ⌊𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3⌋𝑇𝑇  with 𝐹𝐹1  as the extensional force, 𝐹𝐹2  and 𝐹𝐹3  as the 

transverse shear forces, 𝑀𝑀1 as the torsional moment, and 𝑀𝑀2 and 𝑀𝑀3 as the bending moments. 

Neglecting the surface and body forces, the external work per unit length 𝑊𝑊𝑠𝑠 is given as 

𝑊𝑊𝑠𝑠 = ∫ (𝐮𝐮𝑇𝑇𝜎𝜎𝑠𝑠)′𝐴𝐴 𝑑𝑑𝑑𝑑 (16) 

Using Eqs. (3), (4) and (15), and the definition of generalized strain measures Γ, the variation of 

external work 𝛿𝛿𝑊𝑊𝑠𝑠 is obtained as 

𝛿𝛿𝑊𝑊𝑠𝑠 = ∫ [(𝛿𝛿Ψ′)𝑇𝑇𝜎𝜎𝑠𝑠 + 𝛿𝛿Ψ𝑇𝑇(𝜎𝜎𝑠𝑠)′]𝐴𝐴 𝑑𝑑𝑑𝑑  

. (16)

Using Eqs. (3), (4) and (15), and the definition of 

generalized strain measures Γ, the variation of external work 

Ws is obtained as

6 

2.3 Governing equations 

The present work considers sectional stresses to be unknowns in addition to displacements and 

employs variational principle to derive governing equations which leads to a multifield variational 

formulation. The variation of total energy per unit length 𝛿𝛿Π𝑅𝑅 of the beam can be stated as 

𝛿𝛿Π𝑅𝑅 = 𝛿𝛿𝑈𝑈𝑠𝑠 − 𝛿𝛿𝑊𝑊𝑠𝑠 = 0  (11) 

where 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of sectional strain energy and 𝛿𝛿𝑈𝑈𝑠𝑠 is the variation of external work on 

the beam section due to applied loads. The sectional strain energy 𝑈𝑈𝑠𝑠 can be defined in terms of 

Reissner’s semi-complimentary energy functional Φ𝑅𝑅 [10] as 

𝑈𝑈𝑠𝑠 = ∫ [Φ𝑅𝑅 + (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]𝐴𝐴 𝑑𝑑𝑑𝑑  (12) 

where Φ𝑅𝑅 is given as 

Φ𝑅𝑅 = 1
2 [(𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 − (𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇𝜀𝜀𝑠𝑠𝑟𝑟]  (13) 

The reactive strains 𝜀𝜀𝑠𝑠𝑟𝑟 obtained from semi-inverted material constitutive relations and active strains 

𝜀𝜀𝑠𝑠𝑎𝑎 computed from kinematical relations should be compatible, which implies 𝜀𝜀𝑠𝑠𝑟𝑟 = 𝜀𝜀𝑠𝑠𝑎𝑎. The first 

variation of sectional strain energy can then be obtained from Eq. (12) as 

𝛿𝛿𝑈𝑈𝑠𝑠 = ∫ [(𝛿𝛿𝜀𝜀𝑛𝑛𝑎𝑎)𝑇𝑇𝜎𝜎𝑛𝑛𝑎𝑎 + (𝛿𝛿𝜀𝜀𝑠𝑠𝑎𝑎)𝑇𝑇𝜎𝜎𝑠𝑠𝑟𝑟 + (𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟)𝑇𝑇(𝜀𝜀𝑠𝑠𝑎𝑎 − 𝜀𝜀𝑠𝑠𝑟𝑟)]𝐴𝐴 𝑑𝑑𝑑𝑑 (14) 

The last term is a byproduct of the present multifield formulation which corresponds to the strain 

compatibility condition acting 𝛿𝛿𝜎𝜎𝑠𝑠𝑟𝑟 as Lagrange multipliers. The sectional stress resultants can be 

defined using tractions over the beam section 𝜎𝜎𝑠𝑠 as given by 

𝐅𝐅 = ∫ 𝐁𝐁𝑇𝑇𝜎𝜎𝑠𝑠𝐴𝐴 𝑑𝑑𝑑𝑑 (15) 

where 𝐅𝐅 = ⌊𝐹𝐹1 𝐹𝐹2 𝐹𝐹3 𝑀𝑀1 𝑀𝑀2 𝑀𝑀3⌋𝑇𝑇  with 𝐹𝐹1  as the extensional force, 𝐹𝐹2  and 𝐹𝐹3  as the 

transverse shear forces, 𝑀𝑀1 as the torsional moment, and 𝑀𝑀2 and 𝑀𝑀3 as the bending moments. 

Neglecting the surface and body forces, the external work per unit length 𝑊𝑊𝑠𝑠 is given as 

𝑊𝑊𝑠𝑠 = ∫ (𝐮𝐮𝑇𝑇𝜎𝜎𝑠𝑠)′𝐴𝐴 𝑑𝑑𝑑𝑑 (16) 

Using Eqs. (3), (4) and (15), and the definition of generalized strain measures Γ, the variation of 

external work 𝛿𝛿𝑊𝑊𝑠𝑠 is obtained as 

𝛿𝛿𝑊𝑊𝑠𝑠 = ∫ [(𝛿𝛿Ψ′)𝑇𝑇𝜎𝜎𝑠𝑠 + 𝛿𝛿Ψ𝑇𝑇(𝜎𝜎𝑠𝑠)′]𝐴𝐴 𝑑𝑑𝑑𝑑  
(17)
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              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

.

The warping and reactive stress fields are expressed as 

linear functions of generalized stress resultants, given as

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

.

(18)
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where 

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

 and 

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

 are the nodal values of warping and reactive 

stress coefficients with nonuniform distribution over the 

section, and 
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              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

 represents the strain measure coefficients 

which are constant over the section.

Substituting Eqs. (14) and (17) in Eq. (11), and using 

expressions from Eqs. (2), (7), (9), (10) and (18), the sets of 

equilibrium equations can be derived as:

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

,

(19a)
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              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

,

(19b)

where

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

.

(20)

The above submatrices A, E, G, H, and R incorporate 

the effects of geometric and material couplings. Once the 

warping and reactive stress coefficients are solved, the 

generalized Timoshenko-like 6×6 stiffness matrix K can be 

determined as

7 

              +[𝛿𝛿Γ𝑇𝑇𝐅𝐅 + 𝛿𝛿𝐪𝐪𝑇𝑇(𝐅𝐅′ − ℒ𝑞𝑞
𝑇𝑇𝐅𝐅)] (17) 

The warping and reactive stress fields are expressed as linear functions of generalized stress resultants, 

given as 

Λ = Λ̃𝐅𝐅, Υ = Υ̃𝐅𝐅, Γ = Γ̃𝐅𝐅  

Λ′ = Λ̃𝑝𝑝𝐅𝐅, Υ′ = Υ̃𝑝𝑝𝐅𝐅, Γ′ = Γ̃𝑝𝑝𝐅𝐅 (18) 

where Λ̃ and Υ̃ are the nodal values of warping and reactive stress coefficients with nonuniform 

distribution over the section, and Γ̃ represents the strain measure coefficients which are constant over 

the section. 

Substituting Eqs. (14) and (17) in Eq. (11), and using expressions from Eqs. (2), (7), (9), (10) and 

(18), the sets of equilibrium equations can be derived as: 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

= [
𝟎𝟎
𝟎𝟎
ℒ𝑞𝑞

𝑇𝑇

𝟎𝟎
] (19a) 

[
 
 
 
 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑 𝟎𝟎

𝐆𝐆 𝐄𝐄 𝟎𝟎 𝐃𝐃𝜓𝜓
𝑇𝑇

𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝐃𝐃𝜓𝜓 𝟎𝟎 𝟎𝟎 ]

 
 
 
 
[
Υ̃
Λ̃
Γ̃
Θ
] = [

0 −𝐀𝐀𝑇𝑇 𝟎𝟎 𝟎𝟎
𝐀𝐀 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎
𝟎𝟎 𝟎𝟎 𝟎𝟎 𝟎𝟎

]

[
 
 
 
 Υ̃𝑝𝑝
Λ̃𝑝𝑝
Γ̃𝑝𝑝
Θ𝑝𝑝]

 
 
 
 

+ [
𝟎𝟎
𝟎𝟎
𝐈𝐈
𝟎𝟎
] (19b) 

where 

𝐀𝐀 = ∫ 𝐍𝐍𝜓𝜓
𝑇𝑇𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐄𝐄 = ∫ (ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐂̅𝐂𝑛𝑛𝑛𝑛(ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓)𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐆𝐆 = ∫ (ℒ𝑠𝑠
𝑛𝑛𝐍𝐍𝜓𝜓 − 𝐂̅𝐂𝑠𝑠𝑠𝑠ℒ𝑠𝑠

𝑛𝑛𝐍𝐍𝜓𝜓)𝑻𝑻𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑  

𝐇𝐇 = ∫ 𝐍𝐍𝜎𝜎
𝑇𝑇𝐂̅𝐂𝑠𝑠𝑠𝑠𝐍𝐍𝜎𝜎𝐴𝐴 𝑑𝑑𝑑𝑑, 𝐑𝐑 = ∫ 𝐍𝐍𝜎𝜎

𝑇𝑇𝐁𝐁𝐴𝐴 𝑑𝑑𝑑𝑑 (20) 

The above submatrices A, E, G, H, and R incorporate the effects of geometric and material couplings. 

Once the warping and reactive stress coefficients are solved, the generalized Timoshenko-like 6×6 

stiffness matrix K can be determined as 

𝐊𝐊 =

(

 
 

[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 
𝑇𝑇

[
𝟎𝟎 𝐀𝐀 𝟎𝟎 𝟎𝟎
𝐀𝐀𝑇𝑇 −𝐇𝐇 𝐆𝐆𝑇𝑇 𝐑𝐑
𝟎𝟎 𝐆𝐆 𝐄𝐄 𝟎𝟎
𝟎𝟎 𝐑𝐑𝑇𝑇 𝟎𝟎 𝟎𝟎

]
[
 
 
 Λ̃𝑝𝑝
Υ̃
Λ̃
Γ̃ ]

 
 
 

)

 
 

−1

 (21) 

.

(21)

The stiffness matrix appeared in Eq. (21) takes into 

account the effects of elastic couplings, transverse shear, and 

Poisson deformations.

3. Results and Discussion

The present multifield formulation is implemented into a 

FE program called multifield variational sectional analysis 

code. The effect of 3D warping on stiffness constants is 

demonstrated for elastically coupled closed section beams.

3.1 Multilayer elliptical pipe

First example is a multilayer elliptical composite pipe 

studied in [11] which exhibits extension-torsion and shear-

bending couplings. The schematic of the section is shown in 

Fig. 2. The material properties can be found in [11]. For the 

present analysis, the section is modeled using 2,800 eight-

node quadrilateral elements. Fig. 3 illustrates the predicted 

3D warping modes of the multilayered elliptical pipe. The 

extensional mode is influenced by the extension-torsion 

coupling as can be seen in Fig. 3(a). Note that the extensional 

mode would exhibit only in-plane contraction of the section 

when no couplings are present. The shear mode F3 shown in 

Fig. 3(c) indicates in-plane deformation due to coupling with 

the bending mode M2. It should be remarked that the shear 

mode without elastic coupling exhibits only out-of-plane 

deformation as that depicted by shear mode F2 in Fig. 3(b). 

The uncoupled bending mode M3 in Fig. 3(f) manifests only 

in-plane displacement due to Poisson effect.

The effect of 3D warping on stiffness constants is 

investigated next. It is noted that without cross-sectional 

warping deformation, the stiffness constants are considered 

to represent generalized Euler-Bernoulli beam theory. 

Table 1 shows the comparison of stiffness constants with 

and without considering 3D warping. The values obtained 

using a displacement-based approach [9] and those using 

variational asymptotic beam sectional analysis (VABS) 
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Fig. 2. Schematic of multilayer elliptical pipe 
  

Fig. 2. ��Schematic of multilayer elliptical pipe
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(a) Extension (F1) 

 
(b) Shear (F2) 

 
(c) Shear (F3) 

 
(d) Torsion (M1) 

 
(e) Bending (M2) 

 
(f) Bending (M3) 

 
Fig. 3. Warping deformation modes of multilayer elliptical pipe (exaggerated) 

  
Fig. 3. ��Warping deformation modes of multilayer elliptical pipe (exag-

gerated)
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[11] are also presented for comparison. The formulations 

presented in [9, 11] consider only displacements as primary 

variables whereas the present multifield formulation 

considers both displacements and sectional stresses as the 

unknowns. The present stiffness constants computed with 

3D warping match well with those of VABS [11] and Ref. [9] 

with the maximum difference to be less than 2%. Neglecting 

3D warping results in fairly large over-predictions in the 

stiffness constants with maximum errors as high as 93.3% 

for shear-bending coupling stiffness K25. The minimum 

difference is 12.3% corresponding to bending stiffness K55. 

The extension-torsion coupling stiffness K14 computed 

without warping is 77.7% higher than that with 3D warping. 

Because of extension-torsion coupling, the extensional 

stiffness K11 also indicates a large deviation of 19.8% when 

the warping is neglected. The torsional (K44) and shear (K33) 

stiffnesses show differences of larger than 80% without 3D 

warping. Since the stiffness constants are used to compute 

global beam behavior, the large errors in stiffness constants 

can result in highly inaccurate predictions of beam response.

3.2 Composite box beam

Next example is a composite box beam with symmetric 

layup [3]. The beam exhibits bending-torsion and extension-

shear couplings. The geometry and layup of the section is 

presented in Fig. 4. The material properties can be found in 

[3]. For the present analysis, the section is discretized with 

360 eight-node quadrilateral elements giving a total of 1,200 

nodes. The 3D warping deformations computed from the 

present analysis are shown in Fig. 5. The extensional mode 

F1 shown in Fig. 5(a) indicates out-of-plane deformation 

due to coupling with the shear mode F2 in addition to in-

plane displacement. The bending mode M2 is affected by the 

coupling with the torsional mode M1 as indicated in Fig. 5(e) 

resulting in out-of-plane deformation. The uncoupled shear 

mode F3 in Fig. 5(c) and bending mode M3 in Fig. 5(f) exhibit 

out-of-plane and in-plane deformations, respectively.

The influence of 3D warping on stiffness constants of 

Table 1. Effect of 3D warping on stiffness constants of multilayer elliptical pipe
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Table 1. Effect of 3D warping on stiffness constants of multilayer elliptical pipe 

 
Stiffness 
Constants VABS [11] Ref. [8] 

Present Multifield 
No warping 3D warping (%)a 

𝐾𝐾11 (N) 4.621E+7 4.621E+7 5.755E+7 4.617E+7 (–19.9) 
𝐾𝐾14 (N m) 1.111E+4 1.112E+4 5.026E+4 1.120E+4 (–77.7) 
𝐾𝐾22 (N) 3.489E+6 3.493E+6 9.972E+6 3.493E+6 (–65.0) 
𝐾𝐾25 (N m) –9.251E+2 –9.287E+2 –1.399E+4 –9.420E+2 (–93.3) 
𝐾𝐾33 (N) 1.463E+6 1.464E+6 9.972E+6 1.459E+6 (–85.4) 
𝐾𝐾36 (N m) –5.859E+3 –5.878E+3 –3.627E+4 –5.896E+3 (–83.7) 
𝐾𝐾44 (N m2) 1.971E+3 1.972E+3 1.068E+4 1.971E+3 (–81.6) 
𝐾𝐾55 (N m2) 5.402E+3 5.402E+3 6.154E+3 5.397E+3 (–12.3) 
𝐾𝐾66 (N m2) 1.547E+4 1.547E+4 2.563E+4 1.543E+4 (–39.8) 

1–Extension; 2,3–shear; 4–torsion; 5,6–bending 
a Percentage difference with respect to values computed without warping  
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Fig. 4. Layup geometry of composite box section 
  

Fig. 4. ��Layup geometry of composite box section
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(a) Extension (F1) 

 
(b) Shear (F2) 

 
(c) Shear (F3) 

 
(d) Torsion (M1) 

 
(e) Bending (M2) 

 
(f) Bending (M3) 

 
Fig. 5. Warping deformation modes of composite box beam (exaggerated) 

 
Fig. 5. ��Warping deformation modes of composite box beam (exag-

gerated)

1–extension; 2,3–shear; 4–torsion; 5,6–bending
a Percentage difference with respect to the values computed without warping
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composite box section is illustrated in Table 2. The stiffness 

values computed from displacement-based analysis [9] 

are also included for reference purpose. The maximum 

difference of 64.6% is noted for shear stiffness K33 compared 

to that without warping. The extension-shear coupling 

stiffness K12 and bending-torsion coupling stiffness K45 

report the differences of 24.8% and 14.1%, respectively, 

with reference to those computed with warping. Overall, 

difference of larger than 10% is found for all stiffness values 

computed without warping. Such large deviations in stiffness 

constants essentially lead to significant underestimations of 

global beam response.

4. Concluding Remarks

In the present study, the influence of three-dimensional 

warping is investigated for composite beams with closed 

sections. A finite element based multifield variational 

cross-sectional analysis is developed to compute the 

generalized Timoshenko level stiffness constants. The 3D 

warping deformation modes are illustrated for beams with 

different elastic couplings. The effect of 3D warping on 

stiffness predictions is demonstrated to be significant with 

differences ranging from 12.3% to 93.3% in reference to that 

without warping. The elastic coupling stiffness constants 

indicate large errors for the cases when warping is neglected. 

The modeling of 3D warping is therefore essential for correct 

estimation of stiffness constants and accurate prediction for 

global structural behavior of elastically coupled composite 

beams. 
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