• Title/Summary/Keyword: Time-varying parameter

Search Result 372, Processing Time 0.045 seconds

ROBUST CONTROLLER DESIGN FOR IMPROVING VEHICLE ROLL CONTROL

  • Du, H.;Zhang, N
    • International Journal of Automotive Technology
    • /
    • v.8 no.4
    • /
    • pp.445-453
    • /
    • 2007
  • This paper presents a robust controller design approach for improving vehicle dynamic roll motion performance and guaranteeing the closed-loop system stability in spite of vehicle parameter variations resulting from aging elements, loading patterns, and driving conditions, etc. The designed controller is linear parameter-varying (LPV) in terms of the time-varying parameters; its control objective is to minimise the $H_{\infty}$ performance from the steering input to the roll angle while satisfying the closed-loop pole placement constraint such that the optimal dynamic roll motion performance is achieved and robust stability is guaranteed. The sufficient conditions for designing such a controller are given as a finite number of linear matrix inequalities (LMIs). Numerical simulation using the three-degree-of-freedom (3-DOF) yaw-roll vehicle model is presented. It shows that the designed controller can effectively improve the vehicle dynamic roll angle response during J-turn or fishhook maneuver when the vehicle's forward velocity and the roll stiffness are varied significantly.

Design of Autonomous Cruise Controller with Linear Time Varying Model

  • Chang, Hyuk-Jun;Yoon, Tae Kyun;Lee, Hwi Chan;Yoon, Myung Joon;Moon, Chanwoo;Ahn, Hyun-Sik
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.5
    • /
    • pp.2162-2169
    • /
    • 2015
  • Cruise control is a technology for automatically maintaining a steady speed of vehicle as set by the driver via controlling throttle valve and brake of vehicle. In this paper we investigate cruise controller design method with consideration for distance to vehicle ahead. We employ linear time varying (LTV) model to describe longitudinal vehicle dynamic motion. With this LTV system we approximately model the nonlinear dynamics of vehicle speed by frequent update of the system parameters. In addition we reformulate the LTV system by transforming distance to leading vehicle into variation of system parameters of the model. Note that in conventional control problem formulation this distance is considered as disturbance which should be rejected. Consequently a controller can be designed by pole placement at each instance of parameter update, based on the linear model with the present system parameters. The validity of this design method is examined by simulation study.

Exponentially Weighted Sliding Window RLS Method for Parameter Estimation (파라메타 추정을 위한 지수 함수적 Sliding window RLS 방식)

  • Choi, Bong-Yeol;Lee, Jie-Tae;Bien, Zeung-Nam
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.109-111
    • /
    • 1989
  • In this paper, we propose a new method of parameter est mat ion which modifies the exponentially weighted RLS (WRLS) method using asliding window. It can be used in adaptive control for a class of linear tine varying system. Computer simulations show that our new method tracts rapidly time varying parameters more effectively than WRLS.

  • PDF

Parameter Reduction in Digital Adaptive Flight Control System for Spaceplanes

  • Togasaki, Yoshihiro;Shimada, Yuzo;Uchiyama, Kenji
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.995-1000
    • /
    • 2004
  • A digital adaptive flight control system is presented for a Japanese automatic landing flight experiment vehicle (ALFLEX). In previous adaptive control systems based on a linear-parameter-varying (LPV) form, the output behavior was excellent, while the behavior of the adjusted parameters was unsatisfactory. In the present study, to obtain a more appropriate parameter adjustment law, the relationship between the coefficient matrices in a continuous-time state equation and the coefficients of a pulse transfer function in a discrete system for conventional aircraft is investigated. As a result, it is revealed that the coefficients of the numerator can be treated as a linear function of dynamic pressure (linear-parameter-varying: LPV), while the coefficients of the denominator can be treated as constant (linear-time-invariant: LTI). From the above analysis, an improved parameter adjustment law is derived by reducing the number of the adjustment parameters. Simulation results also revealed both good output tracking and good parameter adjustment compared with the previous results.

  • PDF

Time-Varying Parameter Estimation of Passive Telemetry RF Sensor System Using RLS Algorithm (RLS 알고리즘을 이용한 원격 RF 센서 시스템의 시변 파라메타 추정)

  • Kim, Kyung-Yup;Yu, Dong-Gook;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2007.04c
    • /
    • pp.29-33
    • /
    • 2007
  • In this paper, time-varying parameter of passive telemetry RF sensor system is estimated using RLS(Rescursive $\leq$* Square) algorithm. In order to overcome the problems such as power limits and complication that general RF sensor system including IC chip has, the principle of inductive coupling is applied to model sensor system The model parameter is rearranged for applying RLS algorithm based on mathematical model to the derived model using inductive coupling principle. Time variant parameter of rearranged model is estimated using forgetting factor, and in case measured data is contaminated by noise and modelling error, the performance of RLS algorithm characterized by the convergence of squared error sum is verified by simulation.

  • PDF

Indirect Adaptive Pole Assignment PID Controllers for Unknown Systems with time varying delay (시변 지연시간을 가지는 미지의 시스템에 대한 간접 극배치 적응 PID 제어기)

  • Nam, Hyun-Do;Ahn, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.913-916
    • /
    • 1988
  • Indirect adaptive pole assignment PID controllers for unknown systems with time varying delay, is proposed. Unknown system parameters are estimated by recursive least square method, and time varying delay is estimated using indirect predictors. Since the order of parameter vectors didn't increase, the computational burden is not largely increased in spite of using indirect adaptive control method with time varying delay estimation. Computer simulation is performed to illustrate the efficiency of the proposed method.

  • PDF

Control and Parameter Estimation of Uncertain Robotic Systems by An Iterative Learning Method (불확실한 로보트 시스템의 제어와 파라미터 추정을 위한 반복학습제어)

  • 국태용;이진수
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.4
    • /
    • pp.427-438
    • /
    • 1991
  • An iterative learning control scheme for exact-tracking control and parameter estimation of uncertain robotic system is preented. In the learning control structure, the control input converges globally and asymtotically to the desired input as iteration increases. Since convergence of parameter errors depends only on the persistent exciting condition of system trajectories along the iteration independently of the time-duration of trajectories, it may be achieved with system trajectories with small duration. In addition, the proposd learning control schemes are applicable to time-varying parametric systems as well as time-invariant systems, because the parameter estimation is performed at each fixed time along the iteration. In the parameter estimator, the acceleration information as well as the inversion of estimated inertia matrix are not used at all, which makes the proposed learning control schemes more feasible.

  • PDF

H Sampled-Data Control of LPV Systems with Time-varying Delay (시변지연을 가지는 LPV시스템의 H 샘플데이타 제어)

  • Liu, Yajuan;Lee, Sangmoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.1
    • /
    • pp.121-127
    • /
    • 2015
  • This paper considers the problem of sampled-data control for continuous linear parameter varying (LPV) systems. It is assumed that the sampling periods are arbitrarily varying but bounded. Based on the input delay approach, the sampled-data control LPV system is transformed into a continuous time-delay LPV system. Some less conservative stabilization results represented by LMI (Linear Matrix Inequality) are obtained by using the Lyapunov-Krasovskii functional method and the reciprocally combination approach. The proposed method for the designed gain matrix should guarantee asymptotic stability and a specified level of performance on the closed-loop hybrid system. Numerical examples are presented to demonstrate the effectiveness and the improvement of the proposed method.

A Study on the Sway Control of a Crane Based on Gain-Scheduling Approach (Gain-Scheduling 기법을 이용한 크레인의 흔들림 제어에 관한 연구)

  • Kim, Young-Bok
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.53-64
    • /
    • 2001
  • The gain-scheduling control technique is vary useful in the control problem incorporating time varying parameters which can be measured in real time. Based on these facts, in this paper the sway control problem of the pendulum motion of a container hanging on the trolly, which transports containers from a container ship to trucks, is considered. In the container crane control problem, suppressing the residual swing motion of the container at the end of acceleration, deceleration or the case of that the unexpected disturbance input exists is main issue. For this problem, in general, the trolley motion control strategy is introduced and applied. But, in this paper, we introduce and synthesize a new type of swing motion control system. In this control system, a small auxiliary mass is installed on the spreader. And the actuator reacts against the auxiliary mass, applying inertial control forces to the container to reduce the swing motion in the desired manner. In this paper, we assume that an plant parameter is varying and apply the gain-scheduling control technique design the anti-swing motion control system for the controlled plant. In this control system, the controller dynamics are adjusted in real-time according to time-varying plant parameters. And the simulation result shows that the proposed control strategy is shown to be useful to the case of time-varying system and, robust to disturbances like winds and initial sway motion.

  • PDF

Delay-dependent Robust Stability of Discrete-time Uncertain Delayed Descriptor Systems using Quantization/overflow Nonlinearities (양자화와 오버플로우 비선형성을 가지는 이산시간 불확실 지연 특이시스템의 지연종속 강인 안정성)

  • Kim, Jong-Hae;Oh, Do-Cang
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.529-535
    • /
    • 2013
  • This paper considers the problem of robust stability for uncertain discrete-time interval time-varying delayed descriptor systems using any combinations of quantization and overflow nonlinearities. First, delay-dependent linear matrix inequality (LMI) condition for discrete-time descriptor systems with time-varying delay and quantization/overflow nonlinearities is presented by proper Lyapunov function. Second, it is shown that the obtained condition can be extended into descriptor systems with uncertainties such as norm-bounded parameter uncertainties and polytopic uncertainties by some useful lemmas. The proposed results can be applied to both descriptor systems and non-descriptor systems. Finally, numerical examples are shown to illustrate the effectiveness and less conservativeness.