• Title/Summary/Keyword: Time-series model

Search Result 2,666, Processing Time 0.035 seconds

Stochastic structures of world's death counts after World War II

  • Lee, Jae J.
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.3
    • /
    • pp.353-371
    • /
    • 2022
  • This paper analyzes death counts after World War II of several countries to identify and to compare their stochastic structures. The stochastic structures that this paper entertains are three structural time series models, a local level with a random walk model, a fixed local linear trend model and a local linear trend model. The structural time series models assume that a time series can be formulated directly with the unobserved components such as trend, slope, seasonal, cycle and daily effect. Random effect of each unobserved component is characterized by its own stochastic structure and a distribution of its irregular component. The structural time series models use the Kalman filter to estimate unknown parameters of a stochastic model, to predict future data, and to do filtering data. This paper identifies the best-fitted stochastic model for three types of death counts (Female, Male and Total) of each country. Two diagnostic procedures are used to check the validity of fitted models. Three criteria, AIC, BIC and SSPE are used to select the best-fitted valid stochastic model for each type of death counts of each country.

Kalman-Filter Estimation and Prediction for a Spatial Time Series Model (공간시계열 모형의 칼만필터 추정과 예측)

  • Lee, Sung-Duck;Han, Eun-Hee;Kim, Duck-Ki
    • Communications for Statistical Applications and Methods
    • /
    • v.18 no.1
    • /
    • pp.79-87
    • /
    • 2011
  • A spatial time series model was used for analyzing the method of spatial time series (not the ARIMA model that is popular for analyzing spatial time series) by using chicken pox data which is a highly contagious disease and grid data due to ARIMA not reflecting the spatial processes. Time series model contains a weighting matrix, because that spatial time series model influences the time variation as well as the spatial location. The weighting matrix reflects that the more geographically contiguous region has the higher spatial dependence. It is hypothesized that the weighting matrix gives neighboring areas the same influence in the study of the spatial time series model. Therefore, we try to present the conclusion with a weighting matrix in a way that gives the same weight to existing neighboring areas in the study of the suitability of the STARMA model, spatial time series model and STBL model, in the comparative study of the predictive power for statistical inference, and the results. Furthermore, through the Kalman-Filter method we try to show the superiority of the Kalman-Filter method through a parameter assumption and the processes of prediction.

Model Checking for Time-Series Count Data

  • Lee, Sung-Im
    • Communications for Statistical Applications and Methods
    • /
    • v.12 no.2
    • /
    • pp.359-364
    • /
    • 2005
  • This paper considers a specification test of conditional Poisson regression model for time series count data. Although conditional models for count data have received attention and proposed in several ways, few studies focused on checking its adequacy. Motivated by the test of martingale difference assumption, a specification test via Ljung-Box statistic is proposed in the conditional model of the time series count data. In order to illustrate the performance of Ljung- Box test, simulation results will be provided.

Time Series Classification of Cryptocurrency Price Trend Based on a Recurrent LSTM Neural Network

  • Kwon, Do-Hyung;Kim, Ju-Bong;Heo, Ju-Sung;Kim, Chan-Myung;Han, Youn-Hee
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.694-706
    • /
    • 2019
  • In this study, we applied the long short-term memory (LSTM) model to classify the cryptocurrency price time series. We collected historic cryptocurrency price time series data and preprocessed them in order to make them clean for use as train and target data. After such preprocessing, the price time series data were systematically encoded into the three-dimensional price tensor representing the past price changes of cryptocurrencies. We also presented our LSTM model structure as well as how to use such price tensor as input data of the LSTM model. In particular, a grid search-based k-fold cross-validation technique was applied to find the most suitable LSTM model parameters. Lastly, through the comparison of the f1-score values, our study showed that the LSTM model outperforms the gradient boosting model, a general machine learning model known to have relatively good prediction performance, for the time series classification of the cryptocurrency price trend. With the LSTM model, we got a performance improvement of about 7% compared to using the GB model.

Fuzzy Semiparametric Support Vector Regression for Seasonal Time Series Analysis

  • Shim, Joo-Yong;Hwang, Chang-Ha;Hong, Dug-Hun
    • Communications for Statistical Applications and Methods
    • /
    • v.16 no.2
    • /
    • pp.335-348
    • /
    • 2009
  • Fuzzy regression is used as a complement or an alternative to represent the relation between variables among the forecasting models especially when the data is insufficient to evaluate the relation. Such phenomenon often occurs in seasonal time series data which require large amount of data to describe the underlying pattern. Semiparametric model is useful tool in the case where domain knowledge exists about the function to be estimated or emphasis is put onto understandability of the model. In this paper we propose fuzzy semiparametric support vector regression so that it can provide good performance on forecasting of the seasonal time series by incorporating into fuzzy support vector regression the basis functions which indicate the seasonal variation of time series. In order to indicate the performance of this method, we present two examples of predicting the seasonal time series. Experimental results show that the proposed method is very attractive for the seasonal time series in fuzzy environments.

A Study on the Relations among Stock Return, Risk, and Book-to-Market Ratio (주식수익률, 위험, 장부가치 / 시장가치 비율의 관계에 관한 연구)

  • Kam, Hyung-Kyu;Shin, Yong-Jae
    • Journal of Industrial Convergence
    • /
    • v.2 no.2
    • /
    • pp.127-147
    • /
    • 2004
  • This paper examines the time-series relations among expected return, risk, and book-to-market(B/M) at the portfolio level. The time-series analysis is a natural alternative to cross-sectional regressions. An alternative feature of the time-series regressions is that they focus on changes in expected returns, not on average returns. Using the time-series analysis, we can directly test whether the three-factor model explains time-varying expected returns better than the characteristic-based model. These results should help distinguish between the risk and mispricing stories. We find that B/M is strongly associated with changes in risk, as measured by the Fama and French(1993) three-factor model. After controlling for changes in risk, B/M contains little additional information about expected returns. The evidence suggests that the three-factor model explains time-varying expected returns better than the characteristic-based model.

  • PDF

A Review of Time Series Analysis for Environmental and Ecological Data (환경생태 자료 분석을 위한 시계열 분석 방법 연구)

  • Mo, Hyoung-ho;Cho, Kijong;Shin, Key-Il
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.365-373
    • /
    • 2016
  • Much of the data used in the analysis of environmental ecological data is being obtained over time. If the number of time points is small, the data will not be given enough information, so repeated measurements or multiple survey points data should be used to perform a comprehensive analysis. The method used for that case is longitudinal data analysis or mixed model analysis. However, if the amount of information is sufficient due to the large number of time points, repetitive data are not needed and these data are analyzed using time series analysis technique. In particular, with a large number of data points in the current situation, when we want to predict how each variable affects each other, or what trends will be expected in the future, we should analyze the data using time series analysis techniques. In this study, we introduce univariate time series analysis, intervention time series model, transfer function model, and multivariate time series model and review research papers studied in Korea. We also introduce an error correction model, which can be used to analyze environmental ecological data.

Automatic order selection procedure for count time series models (계수형 시계열 모형을 위한 자동화 차수 선택 알고리즘)

  • Ji, Yunmi;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.2
    • /
    • pp.147-160
    • /
    • 2020
  • In this paper, we study an algorithm that automatically determines the orders of past observations and conditional mean values that play an important role in count time series models. Based on the orders of the ARIMA model, the algorithm constitutes the order candidates group for time series generalized linear models and selects the final model based on information criterion among the combinations of the order candidates group. To evaluate the proposed algorithm, we perform small simulations and empirical analysis according to underlying models and time series as well as compare forecasting performances with the ARIMA model. The results of the comparison confirm that the time series generalized linear model offers better performance than the ARIMA model for the count time series analysis. In addition, the empirical analysis shows better performance in mid and long term forecasting than the ARIMA model.

Precipitation forecasting by fuzzy Theory : II. Applicability of Fuzzy Time Series (퍼지론에 의한 강수 예측 : II. 퍼지 시계열의 적용성)

  • Kim, Hung-Soo;La, Chang-Jin;Kim, Joong-Hoon;Kang, In-Joo
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.5
    • /
    • pp.631-638
    • /
    • 2002
  • Stochastic model has been widely used for the forecasting of time series. However, this study tries to perform the precipitation forecasting by fuzzy time series model using fuzzy concept. The published fuzzy based models are used for the forecasting of time series and also we suggest that the combination of fuzzy time series models and neuro-fuzzy system can increase the forecastibility of the models. The precipitation time series in illinois, USA is analyzed for the forecasting by the known fuzzy time series models and the suggested methodology in this study. As a result, we know that the suggested methodology shows more exact results than the known models.

Performance Evaluation of a Feature-Importance-based Feature Selection Method for Time Series Prediction

  • Hyun, Ahn
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.1
    • /
    • pp.82-89
    • /
    • 2023
  • Various machine-learning models may yield high predictive power for massive time series for time series prediction. However, these models are prone to instability in terms of computational cost because of the high dimensionality of the feature space and nonoptimized hyperparameter settings. Considering the potential risk that model training with a high-dimensional feature set can be time-consuming, we evaluate a feature-importance-based feature selection method to derive a tradeoff between predictive power and computational cost for time series prediction. We used two machine learning techniques for performance evaluation to generate prediction models from a retail sales dataset. First, we ranked the features using impurity- and Local Interpretable Model-agnostic Explanations (LIME) -based feature importance measures in the prediction models. Then, the recursive feature elimination method was applied to eliminate unimportant features sequentially. Consequently, we obtained a subset of features that could lead to reduced model training time while preserving acceptable model performance.