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Abstract
This paper analyzes death counts after World War II of several countries to identify and to compare their

stochastic structures. The stochastic structures that this paper entertains are three structural time series models, a
local level with a random walk model, a fixed local linear trend model and a local linear trend model. The struc-
tural time series models assume that a time series can be formulated directly with the unobserved components
such as trend, slope, seasonal, cycle and daily effect. Random effect of each unobserved component is charac-
terized by its own stochastic structure and a distribution of its irregular component. The structural time series
models use the Kalman filter to estimate unknown parameters of a stochastic model, to predict future data, and
to do filtering data. This paper identifies the best-fitted stochastic model for three types of death counts (Female,
Male and Total) of each country. Two diagnostic procedures are used to check the validity of fitted models. Three
criteria, AIC, BIC and SSPE are used to select the best-fitted valid stochastic model for each type of death counts
of each country.
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1. Introduction

This paper analyzes yearly death counts after World War II of 8 countries in three regions, North
America, Europe, and Asia-Pacific region to identify and to compare stochastic structures of death
counts. The 8 countries are the United States and Canada in North America, United Kingdom, France,
Italy, and Spain in Europe, and Taiwan and Australia in Asia-Pacific region. Death counts are from
the year 1946 or 1970 (depending on availability) and are separated by gender and total counts to see
whether gender influences the stochastic structures. The structural time series models (Harvey, 1981,
1989) assume that a time series can be formulated directly with the unobserved components such as
trend, slope, seasonal, cycle, and daily effect. The random effect of each unobserved component is
characterized by its stochastic structure and a distribution of its irregular component. Structural time
series models that this paper entertained are a local level with a random walk model, a fixed local
linear trend model, and a local linear trend model. These models are sensible choices based on the
preliminary examination of death counts data. Structural time series models use the Kalman filter
(Kalman, 1960) to estimate unknown parameters of the entertained model, forecast future values of
time series, and estimate unobserved components in the stochastic model by filtering and smoothing.
To apply the Kalman filter, the structural time series models need to be converted to a state space
form (Durbin and Koopman, 2012) that is the standardized form for the Kalman filter. To check the
validity, two diagnostic procedures are used for a fitted model: One is for checking the normality of
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residuals, for which the Shapiro-Wilk test is used and the normal QQ plot and density plot are used
to confirm the results of the Shapiro-Wilk test. Second is for checking the independence of residuals,
for which the Run test is used. To find the best-fitted model among valid models, Akaike information
criterion (AIC), Bayesian information citerion (BIC) and sum of square of one-step-ahead prediction
errors (SSPE) are used. The best-fitted valid models of death counts for each country by female, male
and total are fully examined to see any differences or similarities among countries and regions. The
organization of this paper is as follows. In Section 2, the structural time series model is presented. It
also shows how to set up the state space form for each structural time series model entertained. In
Section 3, the Kalman filter is introduced. This section also shows which R packages to use for the
Kalman filter. In Section 4, results of analyzing death counts of 8 countries by female, male and total
are presented. Finally, Section 5 concludes the paper.

2. Structural time series models and their state space forms

The structural time series models assume that a time series can be formulated directly with the un-
observed components that are characterized by its own stochastic structure and an irregular term. By
varying its own stochastic structure and the distribution of an irregular term of an unobserved com-
ponent, structural times series models can fit a variety of time series in many fields. Outcomes of a
structural time series model are estimates of unknown parameters, forecasts of future values of time
series, and estimates of unobserved components in the model. Estimates of unobserved components
of a model give an insight to fully understand a stochastic structure of a time series of interest. There
are many papers regarding the structural time series model. For example, Harvey and Todd (1983)
compared the structural time series model with Box and Jenkins’ ARIMA model. Harvey and Peters
(1990) showed the number of methods to compute the maximum likelihood estimator of unknown
parameters of the structural time series model.

For death counts data, three structural time series models are entertained: local level with random
walk model, fixed local linear trend model, and local linear trend model. Choices of these models are
based on the examinations of plots of death counts of 8 countries by female, male and total. Plots of
death counts of all 8 countries by female, male and total are presented in Section 4.

2.1. Local level with a random salk model

First structural time series model entertained in this paper is the local level with a random walk
(LLRW) model: yt = µt + εt,

µt = µt−1 + ηt,
(2.1)

where yt is an observed time series data, µt is an unobserved trend component that represents the
long-term movement in a time series, ηt is an irregular component that shows the stochastic behavior
of the trend of time series, and εt is an irregular component that shows the stochastic behavior other
than the trend defined in the second equation in (2.1).

2.2. Local linear trend model

Second model entertained is the local linear trend (LT) model:
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
yt = µt + εt,

µt = µt−1 + βt−1 + ηt,

βt = βt−1 + ζt,

(2.2)

where yt is an observed time series data, µt is an unobserved trend component, βt is an unobserved
slope component, ζt is an irregular component that shows the stochastic behavior of the slope of the
trend of time series. ηt and εt are defined as (2.1). This model shows that not only a trend of series but
also a slope of the trend is stochastic with its own irregular component.

2.3. Fixed local linear trend model

Third model is the fixed local linear trend (FT) model that is a variation of LT model:yt = µt + εt,

µt = µt−1 + β + ηt,
(2.3)

where yt is an observed time series data, β is a deterministic slope of the trend, µt, ηt, and εt are defined
as (2.1) and (2.2). This model assumes that a series has a deterministic slope, rather than a stochastic.

2.4. State space form

Structural time series model uses the Kalman filter to estimate unknown parameters, to forecast future
values and to estimate unobserved components. To use the Kalman filter, a state space form (Durbin
and Koopman, 2012) is required. The state space form is a standardized form of a stochastic model
as an input for the Kalman filter. For the LLRW model (2.1), it is the state space form itself. Thus,
the state space form (2.1) has 1 × 1 state vector, µt and two irregular components, ηt and εt. The state
space form of the LT model (2.2) is:

yt =
(
1 0

) µt

βt

 + εt,µt

βt

 =

1 1
0 1

 µt−1

βt−1

 +

1 0
0 1

 ηt

ζt

 .
(2.4)

The state space form (2.4) has 2 × 1 state vector,
(
µt
βt

)
and three irregular components, ηt, ζt and εt.

The state space form of the FT model (2.3) is:
yt =

(
1 0

) µt

βt

 + εt,µt

βt

 =

1 1
0 1

 µt−1

βt−1

 +

10
 ηt.

(2.5)

The state space form (2.5) has 2 × 1 state vector,
(
µt
βt

)
and two irregular components, ηt and εt.
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3. Kalman filter

Kalman filter has been applied to many fields since Kalman’s first paper (Kalman, 1960) was pub-
lished. Harrison and Stevens (1971) was the first paper to apply the Kalman filter to a time series
analysis. Since then, the Kalman filter has been used to analyze several time series models such as
ARIMA models (Box and Jenkins, 1976), structural time series models (Harvey, 1989), and ARMAX
models (Hannan and Deistler, 1988). Some areas where it has been applied include disease control
(Gove and Houston, 1996), actuary claim reserves forecasting (Chukhrova and Johannssen, 2017),
rain fall forecasting (Asemota et al., 2016; Zulfi et al., 2018), and machine learning (Nobrega and
Oliveira, 2019).

Kalman filter can be applied to either univariate and multivariate time series, and to either time
variant structure or time invariant structure of time series. Time series data, Yt, for t = 1, 2, . . . ,T
denotes the observed values of a time series of interest. Yt could be a univariate or multivariate. αt

denotes the unobserved component vector, called the state vector. For the Kalman filter, the observed
data Yt and the unobserved state vector αt have the linear relationship as

Yt = Ztαt + εt, t = 1, 2, . . . ,T, (3.1)

where Yt is N × 1 (N = 1 for the univariate and N > 1 for the multivariate), Zt is N × m matrix, αt is
m × 1 vector, and εt is N × 1 vector of irregular components. For equation (3.1), Zt is assumed to be a
known quantity that shows the relationship between Yt and αt, and εt is assumed to have a multivariate
normal distribution with mean of N × 1 vector of zero and covariance of N × N matrix, ht. Equation
(3.1) is called the observation equation. For a univariate Yt, the observation equation (3.1) can be
written as

Yt = z′tαt + εt, t = 1, 2, . . . ,T, (3.2)

where Yt is a scalar, z′t is 1 × m vector, αt is m × 1 vector, εt is a scalar irregular component whose
distribution is a normal with mean of zero and a scalar variance, ht. The other equation required in the
Kalman filter is called the transition equation, which shows the stochastic behavior of the state vector,
αt. The transition equation is also linear as

αt = Ttαt−1 + Rtγt, t = 1, 2, . . . ,T, (3.3)

where Tt is m×m matrix, Rt is m× g matrix, γt is g× 1 vector of irregular terms whose distribution is
assumed to be a multivariate normal with mean of g× 1 vector of zero and covariance of g× g matrix,
Qt. The matrices Zt, Tt and Rt, and covariance matrices, ht and Qt may or may not change over time. If
the matrices do not change over time, the model is called the time-invariant Kalman filter. Otherwise,
it is called the time-variant Kalman filter. Equation (3.1) and (3.3) together is called the multivariate
state space form of the Kalman filter, and (3.2) and (3.3) together is called the univariate state space
form of the Kalman filter. By comparing (3.2) and (3.3), the state space form of the LLRW model
(2.1) has the following identities: 

αt = µt, z′t = 1, Tt = 1,
Rt = 1, εt = εt, γt = ηt,

ht = variance of εt := VarE,
Qt = variance of ηt := VarN.

(3.4)
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The state space form of the LT model (2.4) has the following identities:

αt =

µt

βt

 , z′t =
(
1 0

)
, Tt =

1 1
0 1

 ,
Rt =

1 0
0 1

 , εt = εt, γt =

ηt

ζt

 ,
ht = variance of εt := VarE,

Qt = variance of

ηt

ζt

 :=

VarN 0
0 VarK

 .
(3.5)

The state space form of the FT model (2.5) has the following identities:

αt =

µt

βt

 , z′t =
(
1 0

)
, Tt =

1 1
0 1

 ,
Rt =

10
 , εt = εt, γt = ηt,

ht = variance of εt := VarE,
Qt = variance of ηt := VarN.

(3.6)

The Kalman filter has three assumptions: A1) the initial state vector, α0 has a mean of a0 and Co-
variance matrix of P0. A2) the disturbances ηt and γt are independent of each other. This assumption
could be relaxed. A3) the disturbances ηt and γt are independent with the initial state, α0.

Given the information of initial state variable, α0, the Kalman filter starts off the recursive algo-
rithm. The recursive algorithm provides two estimates of the state variable αt. First is the filtered
estimate. It is the estimate of αt given Yt = (yt, . . . , y1). Second is the forecast estimate. It is the
estimate of αt for t = T + 1,T + 2, . . . given YT = (yT , . . . , y1). The filtered estimates of the state
variable αt provide estimates of unobserved components in the structural time series models. These
estimates are minimum mean square estimators (MMSE).

The information required to start off the Kalman filter is mean and covariance matrix of the initial
state vector, α0, which are a0 and P0, respectively. If the state vector αt is a nonstationary, then a
distribution of α0 is given as a diffuse prior whose mean is given as the first data in the series and
covariance matrix is given as kI where k is a very large scalar and I is an m ×m identity matrix where
m is the dimension of the state vector, αt. For the LLRW model, αt = µt and it is a nonstationary and
m = 1. Therefore, a0 is set as y1 and P0 is set as 1.2 e + 10. For the LT model, αt =

(
µt
βt

)
is also a

nonstationary and m = 2. Therefore, a0 is set as
(

y1
0

)
and P0 is set as

(
k 0
0 k

)
where k = 1.2e + 10. For

the FT model, αt =
(
µt
βt

)
is also a nonstationary and m = 2 and slope βt is a deterministic. Therefore,

a0 is set as
(

y1
β

)
and P0 is set as

(
k 0
0 0

)
, where k = 1.2e + 10 and the value of β is the estimate of slope

obtained by doing a simple linear regression of yearly data on time.
In the state space form in (3.1) and (3.3) for a multivariate time series or in (3.2) and (3.3) for

a univariate time series, there are some unknown parameters in matrices, Zt, Tt, ht and Qt. Before
running the recursive algorithm, these unknown parameters should be estimated. From (3.4), (3.5)
and (3.6), unknown parameters of LLRW, LT and FT models are ψLLRW = (VarN, VarE), ψLT = (VarN,
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VarK, VarE) and ψFT = (VarN, VarE), respectively. If the disturbances of εt and ηt are normally
distributed, the likelihood function of the observations could be obtained from the Kalman filter via
the prediction error decomposition (Harvey and Peters, 1990). Unknown parameters are estimated by
maximizing the likelihood function with respect to the unknown parameters.

To analyze our data by the Kalman filter, a R function, StructTS in the R package, stats is
used. The function StructTS, first, estimates unknown parameters in matrices, Zt, Tt, ht and Qt,
and then given the estimates of unknown parameters, provides predictions and filtered estimations
for univariate time series based on the state space form of (3.2) and (3.3). To estimate unknown
parameters in matrices,Zt, Tt, ht and Qt, StructTS calls a R function, optim in the R package, stats.
For the method for optimization in optim, L-BFGS-B is used. L-BFGS-B is described by Byrd et
al. (1995) which allows box constraints, which means that each variable can be given a lower and/or
upper bound. For our models, since unknown parameters are variances of irregular terms, the lower
bound is set as 0 and the upper bound is set as infinity. The initial values to start the function optim are
any nonnegative numbers. This method uses a limited-memory modification of the BFGS, which is
a quasi-Newton method. Outputs of StructTS are estimates of unknown parameters, loglikelihood,
standardized residuals, and filtered estimates of state vector αt. The standardized residuals are used for
the diagnostics of fitted models. From the filtered estimates of αt, estimates of unobserved components
of LLRW, LT and FT are obtained.

4. Analysis of data

4.1. Death counts data

Yearly death counts data of 8 countries analyzed in this paper are extracted from the Human Mortality
Database (HMD). HMD provides several data such as death counts, census counts, birth counts, and
population estimates for calculations of death rates and life tables. The main goal of the HMD is to
document the longevity revolution of the modern era and to facilitate research in its causes and con-
sequences. HMD includes relatively wealthy and highly industrialized countries since it is based on
design to populations where death registration and census data are virtually complete. In this paper,
death counts data of 8 countries are analyzed: Two countries in North America (U.S. and Canada),
four countries in Europe (U.K., France, Italy, and Spain), two countries in Asia-Pacific (Taiwan and
Australia). From death counts from HMD, three death counts data are generated for each country:
Female death counts, Male death counts, and Total death counts. The annual periods of data for coun-
tries are for U.S. (1946–2017), Canada (1946–2016), U.K. (1946–2016), France (1946–2017), Spain
(1946–2018), Italy (1946–2017), Australia (1946–2018), and Taiwan (1970–2014). HMD keeps death
counts data for Taiwan only from the year 1970. This paper uses data after World War II (1939–1945)
since there are serious outliers during World War II, especially for data of countries in Europe.

4.2. Diagnostics and Best fitted model selection

All three models, LLRW, FT, and LT are fitted to three types of death counts (female, male and total)
of all 8 countries. For each model fitted, two diagnostic procedures based on residuals are applied
to see the validity of the fitted model. The residuals in the Kalman filter are obtained from one-step-
ahead-prediction errors (also called innovations). One-step-ahead-prediction errors are obtained by
the Kalman filter with the estimated values of unknown parameters of the fitted model. Standard-
ized residuals are obtained from one-step-ahead-prediction errors divided by the standard deviation of
one-step-ahead-prediction errors. If a fitted model is valid, then the standardized residuals are inde-
pendent and identically distributed by a normal distribution (Harvey, 1989). Thus, the first diagnostic
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Figure 1: Death counts for female, male and total of U.S. and Canada.

Table 1: p-values of Shapiro-Wilk tests for death counts of U.S. and Canada
U.S. Canada

LLRW FT LT LLRW FT LT
Female 0.936 0.666 0.717 0.724 0.610 0.723
Male 0.400 0.585 0.659 0.578 0.406 0.198
Total 0.930 0.956 0.993 0.867 0.916 0.603

procedure is to check the normality of the standardized residuals and the second diagnostic procedure
is to check the independence of the standardized residuals. Shapiro-Wilk test is used to check the
normality, and normal QQ plots and density plots are used to confirm the conclusions of Shapiro-
Wilk test. Run test is used to check the independence of the standardized residuals. Models that pass
two diagnostics procedures are treated as the valid ones. Once the valid models are identified for
each type of data after the diagnostic procedures, a best-fitted valid model is selected based on AIC
(Akaike Information Criterion), BIC (Bayesian Information Criterion) and SSPE (Sum of Square of
one-step-ahead-prediction errors). If these three criteria do not recommend a model unanimously,
then the most recommended one is selected as the best-fitted valid model.

4.3. North American countries, U.S. and Canada

Figure 1 shows plots of death counts of female, male, and total for U.S. and Canada. Both U.S. and
Canadian data show a similar linear trend for death counts of female, male and total. Also, both
countries’ data show that death counts for males are larger than those of females up to the year 2000.
Since then, death counts of females and males are close to each other. Since both countries’ data
show a clear linear trend, it is sensible to fit the LT and FT model. The LT model assumes that
the slope of linear trend is stochastic, and the FT model assumes that it is deterministic. Outcomes
of the LLRW model are also provided to compare with them. Table 1 shows p-values of Shapiro-
Wilk tests for testing normality of the standardized residuals of three models fitted to three types of
death counts in U.S. and Canada. The p-values of two countries show that none of the three models
failed for normality on the level of 0.01. Figure 2 and 3 show normal QQ plots for U.S. and Canada,
respectively. These plots confirm the results of Shapiro-Wilk tests. Table 2 shows the p-values of Run
tests for independence of standardized residuals. The p-values of two countries show that none of the
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Figure 2: QQ plots of U.S.

Figure 3: QQ plots of Canada.

three models failed for independence on the level of 0.01. Thus, for two countries, none of the three
models failed to be valid. Table 3 presents the best model for each type of data based on AIC, BIC and
SSPE for the valid models of U.S. and Canada. If a model is not selected unanimously by all three
criteria, then the most commonly recommended one is selected as the best one. For example, for total
deaths of U.S., the FT is the selected as the best one. Thus, for the U.S., the FT models are the best for
both female and total deaths and the LT model is the best for male deaths. For Canada, the LT models
are the best for both female and total deaths and the FT model is the best for male deaths. Table 4
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Table 2: p-values of Run tests for death counts of U.S. and Canada
U.S. Canada

LLRW FT LT LLRW FT LT
Female 0.042 0.549 0.631 0.809 0.336 0.543
Male 0.281 0.281 0.998 0.471 0.471 0.395
Total 0.281 0.904 0.998 0.809 0.809 0.543

Table 3: Best models for death counts of U.S. and Canada
U.S. Canada

AIS BIS SSPE AIS BIS SSPE
Female FT FT FT LT LT LT
Male LT LT LT FT FT LT
Total FT FT LT LT FT LT

Table 4: Estimates of parameters for death counts of U.S. and Canada
U.S. Canada

VarN VarK VarE VarN VarK VarE
Female by FT 1.922503E+08 NA 3.115608E+07 Female by LT 5.618963E+05 1.730798E+04 3.000166E+05
Male by LT 5.625876E+07 1.459582E+07 7.079134E+07 Male by FT 1.437916E+06 NA 4.166670E+04
Total by FT 7.584381E+08 NA 1.080131E+08 Total by LT 3.156514E+06 3.567977E+04 7.245420E+05

Figure 4: Death counts for female, male and total of U.K. and France

presents the estimated values of unknown parameters of the best model for each type of deaths in U.S.
and Canada. It is noted from Section 3 that unknown parameters of LLRW, LT and FT model are,
respectively, ψLLRW= (VarN, VarE), ψLT = (VarN, VarK, VarE) and ψFT = (VarN, VarE). Thus, for FT
and LLRW models, the parameter estimate for VarK is NA.

4.4. European countries, U.K. and France

Figure 4 and 7 show plots of death counts of female, male and total for U.K. and France, and Italy and
Spain, respectively. Deaths of European countries do not show a clear linear trend that deaths of North
American countries show. Table 5 shows p-values of the Shapiro-Wilk tests for testing normality of
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Table 5: p-values of Shapiro-Wilk tests for death counts of U.K. and France
U.K. France

LLRW FT LT LLRW FT LT
Female 0.999 0.995 0.869 0.819 0.553 0.489
Male 0.829 0.902 0.345 0.377 0.251 0.306
Total 0.996 0.969 0.807 0.802 0.448 0.314

Figure 5: QQ plots of U.K.

Figure 6: QQ plots of France.

the standardized residuals of models fitted to three types of death counts in U.K. and and France.
The p-values of two countries show that none of the three models failed for normality on the level of
0.01. Figure 5 and 6 show normal QQ plots of U.K. and France, respectively. These plots confirm
the results of Shapiro-Wilk tests. Table 6 shows the the p-values of Run tests for independence of
standardized residuals. The p-values of two countries show that none of the three models failed for
independence on the level of 0.01. Thus, for two countries, none of the three models failed to be
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Table 6: p-values of Run tests for death counts of U.K. and France
U.K. France

LLRW FT LT LLRW FT LT
Female 0.471 0.471 0.902 0.719 0.719 0.631
Male 0.092 0.809 0.902 0.073 0.073 0.054
Total 0.809 0.809 0.543 0.401 0.188 0.631

Table 7: Best models for death counts of U.K. and France
U.K. France

AIS BIS SSPE AIS BIS SSPE
Female LT LT LLRW LLRW LLRW LLRW
Male LT LT LLRW LLRW LLRW LLRW
Total LT LT LLRW LLRW LLRW LLRW

Figure 7: Death counts for female, male and total of Italy and Spain.

Table 8: Estimates of parameters for death counts of U.K. and France
U.K. France

VarN VarK VarE VarN VarK VarE
Female by LT 6.732207E+06 2.012691E+05 4.868096E+07 Female by LLRW 1.462518E+07 NA 4.612672E+07
Male by LT 0.000000E+00 5.816742E+05 3.787161E+07 Male by LLRW 9.614802E+06 NA 2.995601E+07
Total by LT 0.000000E+00 2.140323E+06 1.745933E+08 Total by LLRW 4.473024E+07 NA 1.475258E+08

valid. Table 7 presents the best model for each type of data based on AIC, BIC and SSPE for the
valid models for each type for the U.K. and France. As North American countries, if a model is not
selected by unanimously, then the most commonly recommended one is selected. For the U.K., the
LT models are the best for all three types and for France, the LLRW models are the best for all three
types. Table 8 shows estimates of unknown parameters of the best model for each type of deaths in
U.K. and France. As Table 4, for the LLRW models, parameter estimates for VarK are NAs.

4.5. European countries, Italy and Spain

Table 9 shows p-values of Shapiro -Wilk tests for testing normality of the standardized residuals of
models fitted to three types of death counts in Italy and Spain. The p-values show that for Italy, none
of models failed for normality on the level of 0.01, and for Spain, however, the LLRW models for
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Table 9: p-values of Shapiro-Wilk tests for death counts of Italy and Spain
Italy Spain

LLRW FT LT LLRW FT LT
Female 0.689 0.303 0.168 0.019 0.124 0.503
Male 0.453 0.089 0.129 0.000* 0.021 0.119
Total 0.519 0.215 0.098 0.002* 0.066 0.278

*Significance with 0.01

Figure 8: QQ plots of Italy.

Figure 9: QQ plots of Spain.

both male and total deaths failed for normality on the level of 0.01. Figure 8 and 9 show the normal
QQ plots for Italy and Spain, respectively. For Spain, normal QQ plots of both male and total deaths
of the LLRW model show clearly the non-normality (left skewed shape) of data which confirms the
results of Shapiro-Wilk tests. Figure 10 shows the normal QQ plots of both male LLRW and total
LLRW model of Spain again and corresponding density plots for standardized residuals. residuals.
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Figure 10: QQ plots and Density plots for male and total of Spain.

Table 10: p-values of Run tests for death counts of Italy and Spain
Italy Spain

LLRW FT LT LLRW FT LT
Female 0.402 0.188 0.336 0.812 0.476 0.719
Male 0.719 0.719 0.631 0.476 0.476 0.719
Total 0.402 0.188 0.336 0.476 0.235 0.719

*Significance with 0.01

Table 11: Best models for death counts of Italy and Spain
Italy Spain

AIS BIS SSPE AIS BIS SSPE
Female LT LT LLRW LT LT LLRW
Male LLRW LLRW LLRW LT LT LLRW
Total LT LLRW LLRW LT LT LLRW

Table 12: Estimates of parameters for death counts of Italy and Spain
Italy Spain

VarN VarK VarE VarN VarK VarE
Female by LT 0.000000E+00 7.834581E+05 4.880840E+07 Female by LT 0.000000E+00 2.607934E+05 1.998147E+07

Male by LLRW 3.068192E+07 NA 2.589466E+07 Male by LT 0.000000E+00 5.494487E+05 2.062101E+07
Total by LLRW 1.113686E+08 NA 1.315861E+08 Total by LT 0.000000E+00 1.511941E+06 7.905366E+07

Density plots show clearly the left skewed shape of densities. Table 10 shows the p-values of Run
tests for Italy and Spain. The p-values of two countries show that none of the three models failed for
independence on the level of 0.01. Thus, for countries, all models except male LLRW of Spain and
total LLRW of Spain, pass both diagnostic procedures and thus are valid ones. Table 11 presents the
best model for each type of data based on AIC, BIC and SSPE for the valid models for Italy and Spain.
For Italy, the LT model is the best for female and the LLRW models are the best for both male and
total deaths, and for Spain, the LT models are the best for all three types. Table 12 shows estimates of
unknown parameters of the best-fitted model for each type of deaths in Italy and Spain.
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Figure 11: Death counts for female, male and total of Taiwan and Australia.

Table 13: p-values of Shapiro-Wilk tests for death counts of Taiwan and Australia
Taiwan Australia

LLRW FT LT LLRW FT LT
Female 0.623 0.570 0.939 0.243 0.243 0.358
Male 0.623 0.862 0.916 0.265 0.187 0.483
Total 0.450 0.655 0.938 0.167 0.189 0.198

*Significance with 0.01

Figure 12: QQ plots of Taiwan.

4.6. Asia-Pacific countries, Taiwan and Australia

Figure 11 shows plots of death counts of female, male and total deaths for Taiwan and Australia.
Deaths of these two countries show a clear linear trend similar to deaths of the two North American
countries mentioned above. Table 13 shows p-values of Shapiro tests for testing normality of the
standardized residuals of models fitted to three types of death counts in Taiwan and Australia. The
p-values show that none of models for all three types of deaths in Taiwan and Australia failed for
normality on the level of 0.01. Figure 12 and 13 show the normal QQ plots for Taiwan and Australia,
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Figure 13: QQ plots of Australia.

Table 14: p-values of Run tests for death counts of Taiwan and Australia
Taiwan Australia

LLRW FT LT LLRW FT LT
Female 0.361 0.127 0.278 0.018 0.018 0.402
Male 0.127 0.761 0.442 0.342 0.998 0.719
Total 0.761 0.361 0.641 0.154 0.342 0.402

*Significance with 0.01

Table 15: Best models for death counts of Taiwan and Australia
Taiwan Australia

AIS BIS SSPE AIS BIS SSPE
Female LT LT FT FT FT LT
Male LT FT FT FT FT LLRW
Total LT LT LT FT FT LLRW

Table 16: Estimates of parameters for death counts of Taiwan and Australia
Taiwan Australia

VarN VarK VarE VarN VarK VarE
Female by LT 0.000000E+00 2.669466E+04 3.679238E+05 Female by FT 7.231256E+05 NA 7.907837E+05
Male by FT 1.282648E+06 NA 3.192780E+05 Male by FT 9.721123E+05 NA 7.088836E+05
Total by LT 1.765875E+05 1.316371E+05 2.106885E+06 Total by FT 3.093034E+06 NA 2.932334E+06

respectively. These plots confirm the results of Shapiro-Wilk tests. Table 14 shows the p-values of
Run tests for Taiwan and Australia. The p-values of two countries show that none of the three models
failed for independence on the level of 0.01. Thus, for two countries, none of the three models failed
to be valid. Table 15 presents the best model for each type of data based on AIC, BIC and SSPE for
the valid models for Taiwan and Australia. For Taiwan, the LT models are the best for both female
and total deaths and the FT model is the best for male deaths, and for Australia, the FT models are the
best for all three types of deaths. Table 16 shows estimates of unknown parameters of the best-fitted
model for each type of deaths in Taiwan and Australia.
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Figure 14: Filtered estimates of unobserved components for U.S. female, male and total Deaths.

Table 17: Signal to Noise Ratio for U.S. and Canada
U.S. Canada

VarN/VarE VarK/VarE VarN/VarE VarK/VarE
Female by FT 6.171 NA Female by LT 1.873 0.058
Male by LT 0.795 0.206 Male by FT 34.510 NA
Total by FT 7.022 NA Total by LT 4.357 0.049

4.7. Signal extraction for unobserved components

One advantage to fit a structural time series model using the Kalman filter is that unobserved compo-
nents of the time series can be estimated. Both the LLRW and the FT model have an unobserved trend
component, µt. The LT model has two unobserved components, trend and slope, µt and βt, respec-
tively. The Kalman filter provides filtered estimates for unobserved components. For U.S. deaths, it
is noted from Table 3 that the best-fitted model for female, male and total deaths is the FT, the LT and
the FT model, respectively. Figure 14 shows filtered estimates of µt of U.S. female deaths, filtered
estimates of µt and βt of U.S. male deaths, and filtered estimates of µt of U.S. total deaths.

5. Conclusions

This paper analyzes female, male and total death counts of 8 countries in several regions in the world
using three structural time series models with the Kalman filter. Three structural models are a local
level with a random walk (LLRW) model, a fixed local linear trend (FT) model and a local linear trend
(LT) model. LLRW model implies that the level of data moves stochastically based on a random walk
model. Thus, this model is good to fit data without a clear linear pattern. FT model implies that the
level of data moves stochastically with a deterministic slope. Thus, this model is good to fit data with
a clear linear pattern. LT model implies that the level of data moves stochastically with a stochastic
slope. That is, both level and slope move stochastically and thus this model is the most flexible. Thus,
this model is good to fit data both with and without a clear linear pattern. Death counts of all three
types of deaths in two North American countries and two Asia-Pacific countries show similar linear
trends. Best fitted stochastic models for both North American countries and Asia-Pacific countries
are either FT or LT model. Table 17 shows the signal to noise ratios for trend (VarN/VarE) and those
of slope (VarK/VarE) of the best-fitted stochastic models for two North American countries. For the
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Table 18: Signal to Noise Ratio for Taiwan and Australia
Taiwan Australia
VarN/VarE VarK/VarE VarN/VarE VarK/VarE

Female by LT 0.00 0.07 Female by FT. 0.91 NA
Male by FT 4.02 0.04 Male by FT 1.37 NA
Total by LT 0.08 0.06 Total by FT 1.05 NA

Table 19: Signal to Noise Ratio for U.K. and France
U.K. France

VarN/VarE VarK/VarE VarN/VarE VarK/VarE
Female by LT 0.14 0.00 Female by LLRW 0.32 NA
Male by LT 0.00 0.02 Male by LLRW 0.32 NA
Total by LT 0.00 0.01 Total by LLRW 0.30 NA

Table 20: Signal to Noise Ratio for Italy and Spain
Italy Spain

VarN/VarE VarK/VarE VarN/VarE VarK/VarE
Female by LT 0.00 0.02 Female by LT 0.00 0.01

Male by LLRW 1.18 NA Male by LT 0.00 0.03
Total by LLRW 0.85 NA Total by LT 0.00 0.02

U.S., female deaths show higher signal to noise ratio for trend than that of male deaths. For Canada,
however, female deaths show lower signal to noise ratio for trend than that of male deaths. Signal
to noise ratios of slope are small for both countries. Note that NA in the table is for the FT model
where VarK is not presented. Table 18 shows the signal to noise ratios for two Asia-Pacific countries.
It shows that two countries do not have high signal to noise ratios for trend. Male deaths of both
countries have higher signal to noise ratios than those of female death. Taiwan has low signal to noise
ratios of slope as well. European countries do not show any clear linear trend. Best fitted stochastic
models for European countries are either LLRW or LT. Table 19 and 20 show that European countries
have low signal to noise ratios for both trend and slope.

Table 4, 8, 12 and 16 show the estimates of values of variances of irregular components, VarN,
VarK and VarE. These variances show how much each component in the structural model moves
stochastically up and down. For example, value of VarN shows how much the level of the trend, µt

moves stochastically up and down over time, value of VarK shows how much the slope, βt moves
stochastically up and down over time and value of VarE shows how much the observation, yt moves
stochastically up and down around the unobserved trend, µt over time. Thus, the large variances do
not imply that data has the large magnitudes of the trend and the slope, but imply that data has the
large stochastic movements of the trend and the slope. Thus, large values of VarN and VarK of our
data imply that our data has the trend and the slope which move a lot stochastically. To see the point,
it is noted that for Australia, the best models for both female deaths and total deaths are the FT and
from Table 18, ratios of VarN/VarE are similar each other, but from Table 16, VarN of total deaths
is a lot larger than that of Female. Thus it implies that the level of the trend for total deaths moves
stochastically more than that of female deaths. Figure 15 shows the estimates of the trend for both
female deaths and total deaths from the Kalman filter. The plots of two estimated trends show that the
trend of total deaths shows more volatility than that of female. Standard deviation of the trend of total
deaths is 23064.75 and that of female deaths is 12681.7.

In Table 18 through 20, value of signal to noise ratio for trend (VarN/VarE) of LT model is zero
for female model of Taiwan, male and total model of U.K., female and total model of Italy, and all
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Figure 15: Estimates of trend component for female and total deaths of Australia.

models of Spain. For these cases, LT model (2.2) is adjusted as
yt = µt + εt,

µt = µt−1 + βt−1,

βt = βt−1 + ζt.

(5.1)

This adjusted model implies that the level of the trend at time t moves stochastically based on only
the level of trend and slope at time t − 1 without an irregular component of the trend. In this case,
the stochastic movement of the level of the trend is purely based on the stochastic movement of slope,
VarK.
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