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Model Checking for Time—Series Count Datal

Sungim Lee?)

Abstract

This paper considers a specification test of conditional Poisson regression model for
time series count data. Although conditional models for count data have received
attention and proposed in several ways, few studies focused on checking its adequacy.
Motivated by the test of martingale difference assumption, a specification test via
Ljung-Box statistic is proposed in the conditional model of the time series count data.
In order to illustrate the performance of Ljung-Box test, simulation results will be
provided.
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1. Introduction

In the modeling of time series count data, conditional models for y, given y, .. y, and g,
have been considered by several authors such as Wong(1986), Zeger and Qaquish (1988), and
Fokianos (2000). In general, there has been two approaches to the problem of building models
from those data. One is conditional models which assume only a correctly specified conditional
mean Hyly,,,...,y;,x, together with some appropriate variance and autocorrelation structure.
The other is marginal models conditioning only on y, and not on past outcomes (cf. Fahrmeir
and Tutz (2000)). Brumback et al.(2000) unify these two different approaches in terms of the
extended generalized linear models (GLMs). For a variety of different models applied in their
work, Choi et al. (2003) considered the model selection criteria to select proper model.

Although there has been various conditional models for autocorrelated data, a few studies
have applied on a test for the appropriateness a specified model. When we assume the
conditional model for nonnormal time series data, a correctly specified conditional mean
becomes key part of the model assumption like the standard GLM. In particular, since the use
of past outcomes as predictors could explain possible autocorrelation to some dégrees, even if
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it is ad hoc approach, a model’s adequacy can be assessed by testing the assumption that the
data were generated by the specified conditional mean.

In this paper, following the idea of martingale difference assumptiori, we will consider
Ljung-Box statistic as a test statistic which checks if a conditional mean is correctly
specified.

The remainder of this paper is organized as follows. Section 2 defines the Poisson
regression model for time series count data and introduces the null hypothesis and defines the
test statistic. In Section 3, the simulation results are provided for the performance of test
statistics. Conclusions are given in Section 4.

2. Model checking of Poisson regression model
for time series count data

We consider a conditional Poisson regression model for time series count data as a extended
GLM which has past outcome as predictors in order to explain possible autocorrelation. As it
is previously well-explored by Brumback et al.(2000), we assume that the conditional
expectation u,=HKy,|H,), t=1,2,-, T is of the form

K= eXp(x t,ﬁ+Ht,a) H Var(ytlHt)=,u, (21)

where H,= (%, %sm1, X1, Ve~ 1, Vs—g, >, ¥} iS the history of past observations and of
present and past covariates at time ¢ This model in (2.1) is formally identical to that of
generalized linear model for independent observations. When we consider the conditional first
moment of y, appeared in (2.1), we have

Ey,— udH) =0 (2.2)

Let us define g,=1y,— # Then, ¢ satisfies a martingale difference sequence process given

H,. A martingale difference sequence is defined as a process that has constant mean (usually

zero) given some information set which typically includes just its past values. Let Band g
be the conditional least squares estimator of B and o The estimation can be carried out
using a iteratively reweighted least squares algorithm. For details related to estimation, refer
to Section 3 of Brumback et al.(2000) and references cited therein. If the conditional mean in
(2.2) is correctly specified, we can expect that the residual, 7%,~y,— u, satisfy martingale
difference assumption. This implies that the Poisson time series data can be modeled
appropriately. As dealt with in Econometrics (Durlauf (1991), Anderson (1993), and Hong
(1996), etc.), the common way of testing this property has been testing that the process is
uncorrelated. Hence, the test statistic typically employed has been based on the sample
autocorrelations. In this paper, we will employ the Ljung-Box test (cf. Ljung and Box, 1978)
for testing that a process g, is uncorrelated. : '
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Therefore, the considered null hypothesis is represented by
Hy u,'s are uncorrelated. (2.3

Based on the residual 7% we can calculate the residual autocorrelation at the lag f as

n—h
R Z( u— ut+h_7'¢)
=" , =12k (2.4)
2w

where 75¢=§a,/n and kis a positive integer. As similarly shown in Kim et al.(2004), the
Ljung-Box test statistic
R ;
Q (H=n(n+2) X (n—M) “Lr¥(h) 25)

is approximately #%(%) under the model with the assumption in (2.3). The following theorem

ensures the result in (2.5).

Theorem. Suppose that {y,} satisfies that

Vi~ U7 Uy, M= EXD (x,/ B+ Hﬂ)
where {4} forms a stationary martingale difference sequence with  Var(u JHp)=p (oo If

Band g are an estimator of gand ¢ such that
Vn(B— 8 = 0,(1), Vi(a—a) = 0D
then

1 2=k ~ 1 2k
7 tzl Uy Uy = 7o tgl Uy sy 0,1
where  u,=y,—exp(x, B+ H, a).
Proof. For the proofs, we only show that the terms in (i), (i), and (iii) are o,(1)-
_\/17 ’:h;‘t Upyp = Zh(yt_ 2 Vien— )
Zh( =) Fu— 2 Grn— o) T n— Zes)
gh(yt—ut)(yt+h—ﬂ,+h)
+ 71; :Zlh(y,—ﬂt)(ﬂt+h— PG

Ly

SEIFSE

+ \/_1;; gh(yt+h_ﬂt+h)(/‘t— ny (i)
n—h ~ ~
+ 71; ;(#t— )ty ey ().
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Take \/_/I,e,= ys— 1, Then, the term in (j) can be rewritten as
1 n—h -
(z)=; tz:l eN 1Vl ).
Here,

\/—n( ’/}t_/lt) = \/_71{35;(3_/9)+H¢(a_a)}ﬂ:
3 ek B- B+ H(@—a)Y o+

For bounded regressors, we can prove that S‘;p‘/—n( Li—p)=0,1). Then, term ()

converges to zero as g—oo. Similarly as in (), the terms (j) and () can be shown to be

Op(].)'
3. Simulation studies

In this section, we will investigate the performance of the Ljung-Box statistic in (2.5)
through simulations. We consider first the true model (2.1) with H,=y,_,, that is,

yt=#t+\/7tuﬂ 3.1
ﬂt=eXD(0.3xt+0.1y,_1) (32)

where y, is iid observations from N(0,1) and x, is generated from uniform (0,2).

For the empirical size and power at the significance level g=().05 of test statistic in
(25), 1,000 samples of size 100, 200, and 500 are generated from the model in (3.1). In each
simulation, 200 observations are discarded to remove initialization effects. Five values for % 3,
10, 15, 20, and 30, were considered. For the power of the test, the data is generated by

.Ut=eXD(0.3xt+0.1y,_1—0.23/,_2)- (33)

As a result, Table 1 shows the significance level and power of the test statistics for the
three kinds of sample size. We can see that for fixed } the size distortions tend to decrease
as n increases whereas the observed significance level is close to 0.05 at g=9( for each
In particular, the significance levels show less variability for g=15 or 20. Conceming the
power of the test, we observe that it yields good powers as  increases.

So far, we have investigated the model in (2.1) with H, which include lagged values of 4y,
as covariates and consider the power when the data are generated the different lagged values.
In order to analyze the performance of the power against the different alternative models
which replace the past outcome in covariates by residual type, we will calculate the test
powers for the following models.
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<Table 1> Empirical sizes under the model (3.2) and powers of @,(# when the data are
generated from the model (3.3) and the model (3.2) is fitted.

Empirical size Empirical power
k 3 10 15 20 30 3 10 15 20 30
»n=100 | 0022 | 0.039 | 0.046 | 0.054 | 0.070 | 0500 | 0.335 | 0.303 | 0.285 | 0.281
n=200 | 0.030 | 0.038 | 0.047 | 0.051 | 0.058 | 0.852 | 0659 | 0581 | 0529 | 0472
n=500 | 0029 | 0.048 | 0.044 | 0.052 | 0.057 | 0965 | 0.883 | 0.826 | 0.765 | 0.706
Model 1. p,=exp(0.3x,+0.1 (v,—; — exp(x;—;10))- (34)
Model 2. 4 ,=exp(0.3x ,40.1 (log(max(y,_;,0.1)) — x,_,8)- (35)

<Table 2> Powers of the test when the data are generated from Models 1. and 2 in
(3.4)-(35) and in each case, Model (3.2) is fitted with n=200 and »=0 05

k 3 10 15 20 30
Model 1 0.582 0.555 0.544 0.541 0.539
Model 2 0.563 0.530 0.521 0.515 0.513

Table 2 shows the power of test statistics applied to the residual autocorrelations from the
models (3.4) and (35) after fitting an model (3.2). Compared to Table 1, we can see that
overall they yield similar powers.

4. Conclusions

As previously investigated by Pena and Rodriguez (2002) in ARMA(p,q), the significance
level and power of Ljung-Box statistic tend to be somewhat different according to the
degrees of autocorrelation. In the simulation studies of this paper, we use rather weak
correlation between the present and past outcome. Hence, considering the property of
Ljung-Box test, our results seems quite encouraging. In addition, we need to note that the
test statistic yields reasonable powers even if the model in (3.2) has much similarities with
the models in (3.4) and (3.5). From our results we can conclude that the Ljung-Box test can
be employed as an appropriate diagnostic tool for model specification test although the proof
of asymptotics (2.5) needs to be more rigorously derived. We will consider the proof where
growing regressors will be of interest without rather strong assumption of boundness in

future study. Also, it would be worthwhile to extend this test to the wider class of GLMs.
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