• Title/Summary/Keyword: Time-series Model

Search Result 2,673, Processing Time 0.035 seconds

Stochastic Generation Model Development for Optimum Reservoir Operation of Water Distribution System (저수지 최적운영모형을 위한 추계학적 모의 발생 모형의 유도)

  • Kim, Tae Geun;Yoon, Yong Nam;Kim, Joong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.4
    • /
    • pp.887-896
    • /
    • 1994
  • It is common practice in the case of optimum reservoir operation model that the reservoir inflow series are generated by stochastic model with keeping other variable such as water demands from the reservoir constant. However, when the input and output of the water distribution system have close relationship the output variables can be stochastically generated in relation with the input variables. In the present study the reservoir inflow series, the input of the system, is generated by periodic autoregressive model with constant parameter, and the agricultural water demand series, the output, is generated using periodic multivariate autoregressive model with constant parameter. The time period of the data series generated is taken as 10-day which is the common period used for agricultural water uses. The results of data generation by two different models showed that the periodic stochastic models well represent the characteristics of the historical time series, and that in the case of generating model for agricultural demand series it has closer relation with reservoir inflow than with the series itself.

  • PDF

Forecasting Symbolic Candle Chart-Valued Time Series

  • Park, Heewon;Sakaori, Fumitake
    • Communications for Statistical Applications and Methods
    • /
    • v.21 no.6
    • /
    • pp.471-486
    • /
    • 2014
  • This study introduces a new type of symbolic data, a candle chart-valued time series. We aggregate four stock indices (i.e., open, close, highest and lowest) as a one data point to summarize a huge amount of data. In other words, we consider a candle chart, which is constructed by open, close, highest and lowest stock indices, as a type of symbolic data for a long period. The proposed candle chart-valued time series effectively summarize and visualize a huge data set of stock indices to easily understand a change in stock indices. We also propose novel approaches for the candle chart-valued time series modeling based on a combination of two midpoints and two half ranges between the highest and the lowest indices, and between the open and the close indices. Furthermore, we propose three types of sum of square for estimation of the candle chart valued-time series model. The proposed methods take into account of information from not only ordinary data, but also from interval of object, and thus can effectively perform for time series modeling (e.g., forecasting future stock index). To evaluate the proposed methods, we describe real data analysis consisting of the stock market indices of five major Asian countries'. We can see thorough the results that the proposed approaches outperform for forecasting future stock indices compared with classical data analysis.

A study for setting prior allocation of redundancy in parallel series system (체계중복 설정문제에 있어서 Redundancy 우선배치에 관한 연구)

  • 조남호
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.9 no.14
    • /
    • pp.45-48
    • /
    • 1986
  • This paper studies reliability growth model in redundancy allocation of Parallel-series system in which several series system is linked parallelly, The model is generalized by system redundancy of sub-system that have components redundancy. The stage of components in each sub-system is established differently. At the same time by assigned the different number of constraints to the sub-system, this paper deals with rather practical reliability growth model.

  • PDF

Annual Precipitation Reconstruction Based on Tree-ring Data at Seorak (설악산 지역의 Tree-ring 자료를 이용한 연 강수량 재생성)

  • Kwak, Jae Won;Han, Heechan;Lee, Minjung;Kim, Hung Soo;Mun, Jangwon
    • Journal of Korean Society on Water Environment
    • /
    • v.31 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • The purpose of this research is reconstruction of annual precipitation based on Tree-ring series at Seorak mountain and examine its effectiveness. To do so we performed nonlinear time series characteristics test of Tree-ring series and reconstructed annual precipitation of Gangneung from 1687 to 1911 using Artificial neural network and Nonlinear autoregressive exogeneous input (NARX) model which reflects stochastic properties. As a result, Tree-ring series at Seorak Mountain shows nonlinear time series property and reconstructed annual precipitation series drawn from NARX is similar in statistical characteristics of observed annual time series.

Prediction of Water Quality in Miho River Watershed using Water Quality Models (모형을 이용한 미호천 유역의 하천수질 예측)

  • Jeong, Sang-Man;Park, Jeong-Kyoo;Park, Young-Kee;Kim, Lee-Hyung
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.3
    • /
    • pp.223-230
    • /
    • 2004
  • The QUAL2E and Box-Jenkins time series model were applied to the Miho river, a main tributary of the Geum river, to predict water quality. The models are widely used to predict water quality in rivers and watersheds because of its accuracy. As results of the study, we concluded as follows: Pollutant loadings in upper stream of Miho river were determined to 57,811 kgBOD/d, 19,350 kgTN/d, and 5,013 kgTP/d. The loading of TN in Mushim river was 19,450 kgTN/d, respectively. As the mass loadings were compared with pollutant sources, it concluded that the farming livestock contributed highly to mass emissions of BOD and TP and the population contributed to TN mass loading. The observed water quality values were applied to the models to verify and the models were used to predict the water quality. The QUAL2E Model predicted the concentrations of DO, BOD, TN and TP with high accuracy, but not for E-Coli. The Box-Jenkins time series model also showed high prediction for DO, BOD and TN. However, the concentrations of TP and E-Coli were poorly predicted. The result shows that the QUAL2E model is more applicable in Miho basin for prediction of water quality compared to Box-Jenkins time series model.

Prediction of time-series underwater noise data using long short term memory model (Long short term memory 모델을 이용한 시계열 수중 소음 데이터 예측)

  • Hyesun Lee;Wooyoung Hong;Kookhyun Kim;Keunhwa Lee
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.313-319
    • /
    • 2023
  • In this paper, a time series machine learning model, Long Short Term Memory (LSTM), is applied into the bubble flow noise data and the underwater projectile launch noise data to predict missing values of time-series underwater noise data. The former is mixed with bubble noise, flow noise, and fluid-induced interaction noise measured in a pipe and can be classified into three types. The latter is the noise generated when an underwater projectile is ejected from a launch tube and has a characteristic of instantaenous noise. For such types of noise, a data-driven model can be more useful than an analytical model. We constructed an LSTM model with given data and evaluated the model's performance based on the number of hidden units, the number of input sequences, and the decimation factor of signal. It is shown that the optimal LSTM model works well for new data of the same type.

BIM Based Time-series Cost Model for Building Projects: Focusing on Construction Material Prices (BIM 기반의 설계단계 원가예측 시계열모델 -자재가격을 중심으로-)

  • Hwang, Sung-Joo;Park, Moon-Seo;Lee, Hyun-Soo;Kim, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • High-rise buildings have recently increased over the residential, commercial and office facilities, thus an understanding of construction cost for high-rise building projects has been a fundamental issue due to enormous construction cost as well as unpredictable market conditions and fluctuations in the rate of inflation by long-term construction periods of high-rise projects. Especially, recent violent fluctuations of construction material prices add to problems in construction cost forecasting. This research, therefore, develops a time-series model with the Box-Jenkins methodologies and material prices time-series data in Korea in order to forecast future trends of unit prices of required materials. BIM (Building Information Modeling) approaches are also used to analyze injection time of construction resources and to conduct quantity takeoff so that total material price can be forecasted. Comparative analysis of Predictability of tentative ARIMA (Autoregressive Integrated Moving Average) models was conducted to determine optimal time-series model for forecasting future price trends. Proposed BIM based time series forecasting model can help to deal with sudden changes in economic conditions by estimating future material prices.

A generalized regime-switching integer-valued GARCH(1, 1) model and its volatility forecasting

  • Lee, Jiyoung;Hwang, Eunju
    • Communications for Statistical Applications and Methods
    • /
    • v.25 no.1
    • /
    • pp.29-42
    • /
    • 2018
  • We combine the integer-valued GARCH(1, 1) model with a generalized regime-switching model to propose a dynamic count time series model. Our model adopts Markov-chains with time-varying dependent transition probabilities to model dynamic count time series called the generalized regime-switching integer-valued GARCH(1, 1) (GRS-INGARCH(1, 1)) models. We derive a recursive formula of the conditional probability of the regime in the Markov-chain given the past information, in terms of transition probabilities of the Markov-chain and the Poisson parameters of the INGARCH(1, 1) process. In addition, we also study the forecasting of the Poisson parameter as well as the cumulative impulse response function of the model, which is a measure for the persistence of volatility. A Monte-Carlo simulation is conducted to see the performances of volatility forecasting and behaviors of cumulative impulse response coefficients as well as conditional maximum likelihood estimation; consequently, a real data application is given.

A Study of the Forecasting of Hydrologic Time Series Using Singular Spectrum Analysis (Singular Spectrum Analysis를 이용한 수문 시계열 예측에 관한 연구)

  • Kwon, Hyun-Han;Moon, Young-Il
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2B
    • /
    • pp.131-137
    • /
    • 2006
  • We have investigated the properties of the Singular Spectrum Analysis (SSA) coupled with the Linear Recurrent Formula which made it possible to complement the parametric time series model. The SSA has been applied to extract the underlying properties of the principal component of hydrologic time series, which can often be identified as trends, seasonalities and other oscillatory series, or noise components. Generally, the prediction by the SSA method can be applied to hydrologic time series governed (may be approximately) by the linear recurrent formulae. This study has examined the forecasting ability of the SSA-LRF model. These methods were applied to monthly discharge and water surface level data. These models indicated that two of the time series have good abilities of forecasting, particularly showing promising results during the period of one year. Thus, the method presented in this study suggests a competitive methodology for the forecast of hydrologic time series.

A Fusion of the Period Characterized and Hierarchical Bayesian Techniques for Efficient Cluster Analysis of Time Series Data (시계열자료의 효율적 군집분석을 위한 구간특징화와 계층적 베이지안 기법의 융합)

  • Jung, Young-Ae;Jeon, Jin-Ho
    • Journal of Digital Convergence
    • /
    • v.13 no.7
    • /
    • pp.169-175
    • /
    • 2015
  • An effective way to understand the dynamic and time series that follows the passage of time, as valuation is to establish a model to analyze the phenomena of the system. Model of the decision process is efficient clustering information of the total mass of the time series data of the relevant population been collected in a particular number of sub-groups than to look at all a time to an understand of the overall data through each community-specific model determination. In this study, a sub-grouping of the group and the first of the two process model of each cluster by determining, in the following in sub-population characterized by a fusion with heuristic Bayesian clustering techniques proposed a process which can reduce calculation time and cost was confirmed by experiments using actual effectiveness valuation.