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Abstract
This study introduces a new type of symbolic data, a candle chart-valued time series. We aggregate four

stock indices (i.e., open, close, highest and lowest) as a one data point to summarize a huge amount of data. In
other words, we consider a candle chart, which is constructed by open, close, highest and lowest stock indices,
as a type of symbolic data for a long period. The proposed candle chart-valued time series effectively summarize
and visualize a huge data set of stock indices to easily understand a change in stock indices. We also propose
novel approaches for the candle chart-valued time series modeling based on a combination of two midpoints
and two half ranges between the highest and the lowest indices, and between the open and the close indices.
Furthermore, we propose three types of sum of square for estimation of the candle chart valued-time series
model. The proposed methods take into account of information from not only ordinary data, but also from
interval of object, and thus can effectively perform for time series modeling (e.g., forecasting future stock index).
To evaluate the proposed methods, we describe real data analysis consisting of the stock market indices of five
major Asian countries’. We can see thorough the results that the proposed approaches outperform for forecasting
future stock indices compared with classical data analysis.

Keywords: Candle chart, Symbolic data analysis, interval-valued data, time series, stock market
indices of major Asian countries’.

1. Introduction

With the development of computers and data collection technology, database sizes continue to grow,
and thus summaries of information and visualizations of enormous amounts of data are increasingly
important. To address this issue, symbolic data analysis (Diday and Noirhomme-Fraiture, 2008) has
been introduced as an extension of classical data analysis methods to take into account complete and
complex information (Noirhomme-Fraiture and Brito, 2011), such as interval-valued data, histogram-
valued data, multimodal data, and others. By incorporate information that cannot be represented by
classical data analysis, symbolic data analysis enables effective summarization and visualization of
huge databases.

Interval-valued data analysis, especially, has attracted considerable attention. Billard and Diday
(2000) introduced linear regression modeling approaches to symbolic interval-valued data based on
the midpoint of data intervals. To improve the model’s prediction performance, Lima Neto and De
Carvalho (2008) proposed a new approach based on information about the midpoint and half range of
the intervals. Lima Neto et al. (2006) also proposed novel sum of squares methods, called NCRM1
and NCRM2, which considered the correlation between the midpoint and half range. Furthermore,
Maia et al. (2008) introduced approaches to interval-valued time series based on the autoregressive

1 Corresponding author: Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai,
Minato-ku, Tokyo, Japan. E-mail: hwpark@ims.u-tokyo.ac.jp

Published 30 November 2014 / journal homepage: http://csam.or.kr
c⃝ 2014 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



472 Heewon Park, Fumitake Sakaori

(AR) model, the autoregressive integrated moving average (ARIMA) model, the artificial neural net-
work (ANN) model, and a hybrid ARIMA and ANN model. Arroyo et al. (2009) introduced various
forecasting methods for a histogram time series (HTS).

We introduce a new type of symbolic data, called a candle chart-valued time series. The can-
dle chart, which is widely used for empirically forecasting the direction of future stock indices, is
composed of open, close, highest, and lowest stock indices (or prices). It implies that it is hard to
understand change in stock indices by using a huge dataset, especially for the long term time series.
To settle on the issue, we consider the four stock indices consisting of candle chart as a one data point,
and propose a candle chart-valued time series by aggregating information of four stock indices at time
t to as an one data point. We also propose approaches for fitting a time series model to symbolic can-
dle chart-valued time series data based on midpoints and half ranges of open and close indices, and
of highest and lowest indices, in line with the Centre and Range method (CRM method) for interval-
valued data (Lima Neto and De Carvalho, 2008). The forecasted candle chart allows us to predict the
rise or fall of the stock index.

Originalities of this study are given as,

1 Introduce a new type of symbolic data: candle chart-valued time series (CTS), which summarize
complex stock indices dataset, and effectively visualize huge data.

2 Propose novel approaches to fit candle chart-valued time series model by taking account of infor-
mation about not only ordinary dataset but also midpoint and half range of four stock indices.

3 Prediction of index direction is based on both statistical models and a practical method that is used
in real stock market.

The proposed symbolic data, candle chart-valued time series, is a useful tool for the summarization
and visualization of huge stock index dataset, since the information of the four stock indices is ex-
pressed as a one time series data, and we can clearly comprehend the market fluctuations by using the
plot of candle chart-valued time series (i.e., candle chart). Furthermore, the proposed methods for CTS
can effectively perform for forecasting future stock indices, because the methods take into account of
information from various sources, not only ordinary dataset. The candle chart-valued time series and
the novel approaches for estimating the time series models are based on the ideas of interval-valued
data (Lima Neto et al., 2006; 2008; 2010), and we extend their approaches to the candle chart-valued
time series analysis.

The rest of this article is organized as follows. We first introduce typical symbolic data and their
approaches in Section 2. Section 3 presents a new type of symbolic data, candle chart-valued time
series, and presents approaches for modeling of the CTS. An example using the stock indices of five
major Asian countries’ is presented in Section 4. Some concluding remarks are given in Section 5.

2. Symbolic Data Analysis

Suppose we have a dataset consisting of pulse rate hourly measured given in Table 1 (Billard, 2008).
We can see through Table 1 that the dataset represented by classical data format may become huge,
consequently, it is difficult to effectively figure out information of a patient’s condition from the huge
dataset.

The pulse rate dataset can be organized as daily interval (i.e., [minimum, maximum]) as shown
Table 2, which is typical symbolic data, called an interval-valued data. This implies that the huge
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Table 1: Classical data: Pulse rate

patient 01Jul14 02Jul14 · · ·00:00 01:00 · · · 12:00 13:00 · · · 24:00 00:00 01:00 · · · 12:00 13:00 · · · 24:00
1 1 95 · · · 105 90 · · · 89 1 95 · · · 100 90 · · · 85 · · ·
2 2 85 · · · 110 96 · · · 85 1 85 · · · 110 100 · · · 99 · · ·
3 4 97 · · · 98 97 · · · 98 1 102 · · · 105 105 · · · 84 · · ·
.
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98 90 95 · · · 103 100 · · · 87 1 83 · · · 89 90 · · · 109 · · ·
99 89 95 · · · 112 110 · · · 81 1 97 · · · 99 80 · · · 116 · · ·
100 85 95 · · · 101 89 · · · 100 1 101 · · · 103 95 · · · 96 · · ·

Table 2: Interval-valued data: Pulse rate
patient 01Jul14 02Jul14 03Jul14 · · ·

1 [85,119] [88,119] [84,113] · · ·
2 [80,116] [85,120] [83,110] · · ·
3 [81,120] [83,115] [88,109] · · ·
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

98 [83,113] [80,121] [81,101] · · ·
99 [89,109] [81,120] [87,119] · · ·
100 [80,123] [83,116] [85,111] · · ·

Table 3: Histogram data: Pulse rate

patient 01Jul14
00:00 01:00 · · · 12:00 13:00 · · · 24:00

1 1 95 · · · 105 90 · · · 89

dataset represented by classical data format can be effectively expressed by represent interval-valued
data, and it leads to effective summarization and visualization of huge data.

The classical data in Table 1 can be also expressed as a formant of the histogram. Let consider
the patient 1’s data in 01Jul14 given as Table 3. In the viewpoint of the symbolic data analysis, the
classical data can be organized as follows,

yi =
{
pi1 [ai1, bi1] , . . . , pisi

[
aisi , bisi

]}
(2.1)

where pisi is the relative frequency for the sub-interval [aisi , bisi ], i = 1, . . . , n, i.e., the observed
histogram takes values on si interval for ith observation (Diday and Noirhomme-Fraiture, 2008). This
is histogram-valued data.

In our study, we focus on interval-valued data, and extend the approaches for interval-valued
data to a novel candle chart-valued time series. We first briefly introduce the approaches for interval
valued-data in the following section.

2.1. Centre and Range method

Lima Neto and De Carvalho (2008) proposed a Centre and Range method (CRM method), which is
composed of information about midpoint and half range of interval on a linear regression model. The
CRM method consists of midpoints (yc, xc) and half ranges (yr, xr) of response variable and predictor
variables. The linear regression model for CRM method is based on two vectors, wi = (xc

i , y
c
i ) and
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ri = (xr
i , y

r
i ) with xc

i = (xc
i1, . . . , xc

ip) and xr
i = (xr

i1, . . . , xr
ip), where

xc
i j =

xl
i j + xu

i j

2
, xr

i j =
xl

i j − xu
i j

2
, yc

i =
yl

i + yu
i

2
and yr

i =
yl

i − yu
i

2
. (2.2)

In the CRM method, regression models of the midpoints(yc
i ) and half range(yr

i ) are constructed as
follows,

yc
i = β

c
0 + β

c
1xc

i1 + · · · + βc
1xc

ip + ε
c
i ,

yr
i = β

r
0 + β

r
1xr

i1 + · · · + βr
1xr

ip + ε
r
i . (2.3)

We estimate regression coefficients β̂c = (β̂c
0, β̂

c
1, . . . , β̂

c
p) by minimizing the following sum of squares,

S CRM =

n∑
i=1

(
εc

i
)2
+

(
εr

i
)2 . (2.4)

2.2. NCRM1 and NCRM2 method

Lima Neto et al. (2006) proposed new sum of squares and linear regression modeling approaches,
called as NCRM1 and NCRM2, for interval-valued data analysis. They also considered a linear
regression model with yc and yr as response variables, and xc

j and xr
j for j = 1, . . . , p as predictor

variables, respectively.
In NCRM1 model, Lima Neto et al. (2006) assumed that the regression models for midpoint and

half range have same regression coefficients, and introduce the following linear regression models,

yc
i = β0 + β1xc

i1 + · · · + β1xc
ip + ε

c
i ,

yr
i = β0 + β1xr

i1 + · · · + β1xr
ip + ε

r
i . (2.5)

The sum of square of the NCRM1 method is given by,

S NCRM1 =

n∑
i=1

(
εc

i + ε
r
i
)2 , (2.6)

and we estimate the regression coefficients β̂ = (β̂0, β̂1, . . . , β̂p) by minimizing the sum of squares
S NCRM1. The lower and upper bounds (i.e., ŷl and ŷu) are predicted as follows,

ŷl = ŷc − ŷr and ŷu = ŷc + ŷr, (2.7)

where ŷc = xcβ̂ and ŷr = xrβ̂.
The NCRM2 method is similar to the NCRM1 method, but with different regression coefficients

of yc
i and yr

i ,

yc
i = β

c
0 + β

c
1xc

i1 + · · · + βc
1xc

ip + ε
c
i ,

yr
i = β

r
0 + β

r
1xr

i1 + · · · + βr
1xr

ip + ε
r
i , (2.8)

and, the sum of square of the NCRM2 method is given as,

S NCRM2 =

n∑
i=1

(
εc

i + ε
r
i
)2 . (2.9)
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Figure 1: Composition of the candle chart.

We estimate the regression coefficients β̂
c
= (β̂c

0, β̂
c
1, . . . , β̂

c
p) and β̂

r
= (β̂r

0, β̂
r
1, . . . , β̂

r
p) by minimizing

the sum of squares S NCRM2.
We can see through Section 2 that the symbolic data is expressed aggregately based on informa-

tion of observed data, and incorporate internal variation in the new data format. Their methods are
constructed to incorporate the properties of the symbolic data. Thus, the methods outperform data
analysis, since the SDA incorporate not only information of observed data but also additional infor-
mation from the aggregation of the data. Furthermore, the symbolic data analysis provides effective
summarization and visualization results of a huge amount of dataset.

We focus on the interval-valued data incorporating internal variation in data structure, and the
approaches for interval-valued data. We consider the candle chart as a novel symbolic data, and
extend the viewpoint of interval-valued data to symbolic candle chart-valued time series. The candle
chart is constructed by the highest, lowest, open and close indices; however, the interval-valued data
is constructed by the upper and lower bounds of data. It implies that the idea and approaches of
interval-valued data can be easily extended to the CTS. We incorporate the internal variations of not
only between the highest and lowest indices, but also open and close indices to time series modeling
procedures, and propose approaches to estimate a time series model for CTS.

3. Candle Chart-Valued Time Series

In the following sections, we will present a candle chart-valued time series and novel approaches
for fitting a time series model to CTS. In order to incorporate various information about the stock
index time series, we extend the method for symbolic interval-valued time series to symbolic candle
chart-valued time series via midpoint and half range of series.

Maia et al. (2008) introduced approaches for symbolic interval-valued time series using midpoint
and half range series. In their method, two time series are considered: midpoint of interval-valued
series yc

t and half range of interval-valued series yr
t ,

yc
t =

yLt
+ yUt

2
, yr

t =
yLt
− yUt

2
, t = 1, 2, . . . , n, (3.1)

where yLt
is lower bound and yUt

is upper bound of interval of time series yt. To forecast the interval-
valued time series, Maia et al. applied the AR, ARIMA, ANN, and the hybrid models to the midpoint
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Figure 2: Candle chart of KOSPI 200.

Table 4: Candle chart-valued time series
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interval-valued series yc and the half range interval-valued series yr, respectively. They showed the
superiority of the hybrid model based on the ARIMA and ANN model for time series modeling in
overall.

We introduce a new type of symbolic data, candle chart-valued time series. The candle chart,
which is widely used for forecasting direction of the stock index, is composed of four indexes, open
(yo

t ), close (yc
t ), highest (yh

t ) and lowest (yl
t) indexes as shown in Figure 1 (Goswamil et al., 2009).

The stock indices dataset may become huge, since stock price information is usually expressed by
time series of four indices, open, close, highest and lowest. Thus, it is hard to understand and predict
stock price (or index) fluctuation based on the huge dataset, especially for the long term time series.

To settle on the issue, we consider the candle chart as a one data point and propose a new symbolic
data, candle chart-valued time series. Let E = {e1, . . . , en} be a set of example that are describe by
p + 1 symbolic candle chart-valued time series yt, yt−1, . . . , yt−p. Each example ei ∈ E(i = 1, . . . , n)
is represented as a candle chart-valued time series yi = (yi,t, yi,t− j) for j = 1, 2, . . . , p. A variable yi is
termed a “candle chart-valued time series” composed with the open (yo

i ), close (yc
i ), highest (yh

i ) and
lowest (yl

i) stock indices, and a set E takes the values in the domain ℜ = {(yo, yc, yh, yl), 0 < yl ≤
yo, yc ≤ yh} as shown in Table 4.

Table 4 shows that the huge dataset of stock indices can be effectively summarized by the proposed
CTS, i.e., yi,t− j = (yl

i,t− j, y
o
i,t− j, y

c
i,t− j, y

h
i,t− j). Furthermore, the CTS is a useful tool for the visualization
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of the huge dataset of stock indices as shown in Figure 2. Figure 2 shows that the huge dataset is
clearly visualized by the CTS, and thus we can efficiently predict stock indices fluctuations compared
with ordinary stock indices. It may be difficult to understand the fluctuation of stock indices based on
figure with ordinary four stock indices. In short, the CTS is a useful tool for forecasting stock indices,
and a prime example of symbolic data, since the CTS shows the typical properties of symbolic data
(i.e., summarization and visualization).

3.1. Novel method for candle chart-valued time series

We proposed a novel method, called a midpoint-midpoint and range-range (MMRR) method, for
fitting time series model to CTS from the viewpoint of symbolic data analysis. The MMRR method
is composed of four time series: two midpoints (yocm

t , yhlm
t ) and two half ranges (yocr

t , yhlr
t ) of interval

between open (yo
t ) and close (yc

t ) indices, and between the highest (yh
t ) and the lowest (yl

t) indices,
respectively,

• open-close midpoint time series: yocm
t , yocm

t−1 , . . . , yocm
t−p,

• open-close half range time series: yocr
t , yocr

t−1, . . . , yocr
t−p,

• highest-lowest midpoint time series: yhlm
t , yhlm

t−1, . . . , yhlm
t−p,

• highest-lowest half range time series: yhlr
t , yhlr

t−1, . . . , yhlr
t−p,

where

yocm
t =

yc
t + yo

t

2
, yocr

t =
yc

t − yo
t

2
, yhlm

t =
yh

t + yl
t

2
, yhlr

t =
yh

t − yl
t

2
, (3.2)

where yocm
t ≥ 0, yhlm

t ≥ 0, yhlr
t ≥ 0,−∞ < yocr

t < ∞ and yl
t ≤ yo

t , yc
t ≤ yh

t .
For the MMRR method, we apply time series models to the open-close midpoint (yocm ), open-close

half range (yocr ), highest-lowest midpoint (yhlm ) and highest-lowest half range (yhlr ), respectively. The
fitted values of these four series will be used to forecast future open, close, highest and lowest stock
indices as follows,

ŷo
t = ŷocm

t + ŷocr
t and ŷc

t = ŷocm
t − ŷocr

t ,

ŷh
t = ŷhlm

t + ŷhlr
t and ŷl

t = ŷhlm
t − ŷhlr

t , (3.3)

where ŷocm
t , ŷocr

t , ŷhlm
t and ŷhlr

t represent the predicted time series of open-close midpoint, open-close
half range, highest-lowest midpoint and highest-lowest half range of the CTS, respectively, and we
assume that ŷocm

t ≥ 0, ŷhlm
t ≥ 0, ŷhlr

t ≥ 0,−∞ < ŷocr
t < ∞ and ŷl

t ≤ ŷo
t , ŷ

c
t ≤ ŷh

t . By using the MMRR
method, we can take account of information about midpoint and half range of highest and lowest
indices, and of open and close indices in time series modeling for stock index forecasting.

3.2. Time series model for the candle chart-valued time series

We introduce a hybrid ARIMA and ANN model which showed the outstanding performance for
interval-valued time series (Hansen and Nelson, 2003) to fit the CTS. In order to explain volatility
clustering of CTS, we also consider the ARIMA-ARCH model, which is widely used for financial
time series having volatility clustering.
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3.2.1. Hybrid model

The hybrid model, proposed by Zhang (2001), is composed of a linear component and a nonlinear
component,

yt = Lt + Nt, (3.4)

where yt is the current value of the time series at time t, Lt and Nt denote the linear and nonlinear
components, respectively. The linear and nonlinear components are estimated from the data. For the
hybrid model, we first apply the ARIMA (p, d, q) model for the linear component Lt,

ϕp(B)(1 − B)dLt = θq(B)εt + ηt, (3.5)

where ϕp(B) = (1−ϕ1B− · · · ϕpBp) is the order p stationary AR operator, θq(B) = (1− θ1B− · · · θqBq)
is the order q invertible MA operator and B is backward shift operator as BLt = Lt−1 and d is the order
of differencing.

Then, we apply the ANN model to the residuals, which contain only the nonlinear relationship, of
the ARIMA model,

nt = yt − L̂t, (3.6)

to capture the nonlinear relation of the series using p input nodes as follows,

nt = f
(
nt−1, nt−2, . . . , nt−p

)
+ εt. (3.7)

The forecasted time series ŷt in the hybrid model are given by

ŷt = L̂t + N̂t, (3.8)

where L̂t and N̂t are estimated linear and nonlinear components, respectively. For further details on
this method, see Zhang (2001).

Maia et al. (2008) applied the hybrid model to interval-valued time series modeling, and Hansen
and Nelson (2003) showed the superiority of the hybrid approach to time series modeling.

3.2.2. ARIMA-ARCH model

Financial time series often show the volatility clustering. Numerous studies of financial time series
with volatility clustering have been performed using the autoregressive conditional heteroskedasticity
(ARCH) model (Chen et al., 2005). For time series model of CTS, we also consider the ARIMA-
ARCH model to capture the volatility clustering of CTS. The ARIMA(p, d, q)-ARCH(s) model is
given by

ϕp(B)(1 − B)dyt = θq(B)εt + ηt, (3.9)
ηt = σtet,

where ηt are i.i.d. random variables with mean 0 and variance 1, which is independent of past realiza-
tions ηt−i, a random variable et is white noise process, and

σt = α0 +

s∑
i=1

αiη
2
t−i, (3.10)

where α0 > 0, αi > 0 for i = 1, . . . , s and
∑s

i=1 α1 < 1. The differenced series (1 − B)dyt follows the
general stationary ARMA (p, q) process (Wei, 2005).
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3.3. Model estimation

We also propose novel approaches to estimate CTS from the viewpoint of the symbolic data analysis.
In order to effectively forecasting the candle chart time series, we consider estimation methods for
reflecting aggregated information of CTS in line with the method for interval-valued data (Lima Neto
et al., 2006).

MMRR method based on novel sum of squares

• Sum of square 1 for CTS: S 1

S 1 =

n∑
i=1

(
εocm

i

)2
+

n∑
i=1

(
εocr

i

)2
+

n∑
i=1

(
εhlm

i

)2
+

n∑
i=1

(
εhlr

i

)2

=

n∑
i=1

yocm
i,t −

p∑
j=1

ϕocm
j yocm

i,t− j

2

+

n∑
i=1
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i,t −

p∑
j=1

ϕocr
j yocr

i,t− j

2

+

n∑
i=1

yhlm
i,t −
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j=1

ϕhlm
j yhlm

i,t− j

2

+

n∑
i=1

yhlr
i,t −

p∑
j=1

ϕhlr
j yhlr

i,t− j

2

. (3.11)

The S 1 is composed with respect four sum of squares errors of open-close midpoint, open-close
half range, highest-lowest midpoint, and highest-lowest half range. We estimate the parameter of
the time series models, ϕ̂ocm

0 , . . . , ϕ̂ocm
p , ϕ̂ocr

1 , . . . , ϕ̂ocr
p , ϕ̂hlm

1 , . . . , ϕ̂hlm
p and ϕ̂hlr

1 , . . . , ϕ̂hlr
p by minimize

(3.11). The parameters of four variables yocm
t , yocr

t , yhlm
t , and yhlr

t are independently estimated in the
hybrid ARIMA and ANN model or ARIMA-ARCH model.

• Sum of square 2 for CTS: S 2

The S 2 for the MMRR method is given by

S 2 =

n∑
i=1

(
εocm

i + εocr
i

)2
+

n∑
i=1

(
εhlm

i + ε
hlr
i

)2
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yhlr
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2

. (3.12)

The sum of squares S 2 takes account of correlations between yocm
t and yocr

t , and between yhlm
t and

yhlr
t in estimation of time series model. In this case, the intercepts of yocm

t and yocr
t in both the hybrid

and ARIMA-ARCH models, become the same because of the model identifiability. The intercept
of yhlm

t and yhlr
t also become the same. The estimator of ϕocm

0 , . . . , ϕocm
p , ϕocr

0 , . . . , ϕocr
p , ϕhlm

0 , . . . , ϕhlm
p

and ϕhlr
0 , . . . , ϕhlr

p can be obtained by minimize (3.12).

• Sum of square 3 for CTS: S 3
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The S 3 for the MMRR method is given by

S 3 =

n∑
i=1

(
εocm

i + εocr
i + ε

hlm
i + ε

hlr
i

)2

=

n∑
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yhlm
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ϕhlm
j yhlm

i,t− j

 +
yhlr

i,t −
p∑

j=1

ϕhlr
j yhlr

i,t− j




2

. (3.13)

The sum of squares S 3 incorporates the correlation of all information of time series consisting of
MMRR method, and the intercepts in all four models become the same. We can also estimate
ϕ̂ocm

1 , . . . , ϕ̂ocm
p , ϕ̂ocr

1 , . . . , ϕ̂ocr
p , ϕ̂hlm

1 , . . . , ϕ̂hlm
p and ϕ̂hlr

1 , . . . , ϕ̂hlr
p by minimize (3.13).

The 4-indices method

We also introduce a 4-indices method to estimate the proposed candle chart-value time series model
consisting of original open (yo

t ), close (yc
t ), highest (yh

t ) and lowest (yl
t) indices time series. In the 4-

indices method, we consider four time series models for the open (yo
t ), close (yc

t ), highest (yh
t ) indexes,

respectively. The sum of squares for the 4-indices method is given by

S 4I =

n∑
i=1

(
εo

i
)2
+

n∑
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(
εc

i
)2
+
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 +
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2

. (3.14)

The 4-indices method minimizing sum of squares S 4I is equivalent to fit the four independent time
series models for the yo

t , yc
t , yh

t and yl
t, respectively.

The introduced CTS and proposed methods have the following advantages:

• The candle chart valued time series enable effective summarization and visualization of huge stock
indices dataset tbat consist of open, close, highest and lowest indices. Thus, we can effectively
understand the stock market condition (i.e., Figure 2) compared with a method based on ordinary
huge dataset given as Table 4. The merit is one of the typical properties of symbolic data analysis.

• The introduced CTS incorporates various information about stock index time series, such as inter-
val, midpoint and half range of object, not only observed object. Incorporating the various infor-
mation about time series can lead to effective prediction results, and the outstanding results will be
shown in next section.



Candle Chart-Valued Time Series 481

 KOSPI 200

Data

in
d
ex

20OCT2010 17NOV2010 15DEC2010 13JAN2011

1
8
5
0

2
0
5
0

Forecasted KOSPI 200

Data

in
d
ex

20OCT2010 17NOV2010 15DEC2010 13JAN2011

1
8
5
0

2
0
5
0

Figure 3: Candle chart and forecasted candle chart of KOSPI 200.

4. Applications: Stock Market Indices of Five Major Asian Countries’

We apply the proposed approaches to forecast candle chart forms in line with symbolic data analysis
as shown in Figure 3, and forecast the direction of the stock index (i.e., rise or fall).

In order to evaluate the proposed methods, we describe the stock market indices of five major
Asian countries’ (Japan, Korea, China, Singapore, and Hong Kong), which are publicly available
from Korea exchange (http://eng.krx.co.kr/), based on the CTS. The databases are composed of the
daily open, close, highest, and lowest indices of each of the five countries from January 2009 to April
2011. Figure 4 presents the candle chart of the stock market indices of five major Asian countries’
(Korea: KOSPI 200, Japan: Nikkei 225, China: SSE, Singapore: STI, and Hong Kong: HSI).

In this study, we forecast the candle chart form via not each index but midpoints and half ranges
of open and close indices, and highest and lowest indices. We estimate time series model using
the dataset from January 2009 to December 2010, and then forecast the CTS from January 2011 to
April 2011. In order to forecast a candle chart form, we fit the CTS by hybrid and the ARIMA-
ARCH models based on the Akaike information criterion (AIC) (Akaike, 1973) as a model evaluation
criterion, i.e., we select the orders of ARIMA-ARCH and hybrid models that minimize AIC.

We evaluate the proposed MMRR methods based on three types of sum of squares (i.e., S 1, S 2 and
S 3), the method based on four indices (open, close, highest, and lowest) and using only the close index.
In order to evaluate performance of the methods, we compare the root mean square error (RMSE) and
the correctness of the forecasting results for the direction of the stock index (i.e., a proportion of
truly raising (or deceasing) daily indices among the daily stock indices estimated direction as “Up (or
Down)”). In this study, we forecast the stock index direction based on the forecasting candle chart
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Figure 4: Part of the candlestick chart of the stock market index of five major Asia 5 countries’.

forms, which is widely used in real stock market, as shown in Figure 5 and below:

• The stock index will fall : 1, 3, 5, and 7

• The stock index will rise : 2, 4, 6, and 8

Table 5 shows the proportions of correctness of the forecasting results for stock index direction,
where the bold number in column “Ave.” (i.e., average) indicates the best performance among the
used methods. In the viewpoint of forecast accuracy (i.e., average of proportions) and stability, the
ARIMA-ARCH model with the MMRR method based on S 1 shows the superiority for forecasting
the CTS as shown in column “Average” of Table 5. Furthermore, we can see through Table 5 that the
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Figure 5: Direction of stock index based on the candle chart.

Table 5: Forecasting result of the stock index direction
KOSPI 200 Nikkei 225 SSE STI HSI Ave.Up Down Up Down Up Down Up Down Up Down

Close 50.1 50.0 46.4 57.9 31.6 55.6 51.7 55.6 53.6 59.5 51.2
S 4I 51.9 44.4 64.5 58.1 63.5 - 57.1 48.5 58.5 50.5 55.2

ARIMA-ARCH S 1 91.2 84.8 77.4 61.1 89.2 73.1 95.6 91.9 80.0 73.5 81.8
MMRR S 2 74.3 73.3 73.5 59.4 89.2 73.1 81.4 75.0 73.8 22.2 69.5

S 3 82.1 82.8 50.0 15.4 89.2 73.1 85.4 81.8 50.0 42.0 65.2
Close 49.0 70.4 73.3 64.7 - 100.0 100.0 100.0 81.6 72.7 79.1
S 4I 96.3 80.8 80.0 64.7 68.4 39.5 100.0 100.0 81.6 75.8 78.7

hybrid S 1 85.7 75.0 77.4 61.1 80.0 77.8 100.0 100.0 82.4 73.5 81.3
MMRR S 2 100.0 59.5 65.7 53.1 91.4 82.6 100.0 100.0 85.3 78.1 81.6

S 3 100.0 42.3 36.4 20.7 91.4 82.6 66.1 100.0 85.7 78.1 70.3

methods via symbolic data analysis (i.e., S 1, S 2 and S 3) show outstanding performance for predicting
direction of stock indices compared with methods based on classical data analysis (i.e., Close and
S 4I). And, the sum of squares S 3 cannot perform well compared with the other proposed two sum
of squares (i.e., S 1 and S 2). The proposed methods based on symbolic data analysis incorporate
various information about data, such as interval, midpoint and half range of objects, which cannot be
represented classical data analysis, and the properties may lead to outstanding performance for indices
direction prediction.

Table 6 shows the forecasting root mean square error (RMSE) of four stock indices consisting of
candle chart. It can be seen through Table 6 that the sum of square S 2 shows the superior performance
for predicting indices in both ARIMA-ARCH and hybrid models in overall. The S 3 shows extremely
large prediction errors in some indices, and the poor prediction results lead to inefficient results for
predicting direction of indices as shown in Table 5. From the Tables 5 and 6, it can be also seen
that the all methods and models cannot perform well for predicting both direction and indices of the
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Table 6: Root mean square error of the forecasting result

KOSPI 200 Nikkei 225 SSE STI HSI

yo yc yh yl yo yc yh yl yo yc yh yl yo yc yh yl yo yc yh yl

S 4I 2.49 2.42 2.16 2.79 18.91 23.84 23.84 38.62 4.27 11.70 13.79 9.34 2.88 2.90 3.04 3.33 26.05 28.21 48.57 35.52

ARIMA S 1 1.97 2.11 3.41 3.18 10.62 17.53 26.93 31.45 2.42 2.18 13.53 8.03 1.17 2.00 7.83 4.03 15.71 18.40 52.07 56.91

ARCH MMRR S 2 0.85 0.82 1.75 1.34 6.42 11.54 26.40 13.72 2.42 2.18 10.99 7.32 0.62 2.37 5.78 4.85 8.07 10.36 30.65 17.80

S 3 2.15 2.07 7.55 7.39 34.79 39.92236.52123.48 1.97 1.94 7.45 6.43 1.36 1.67 3.61 3.51 14.47 14.33 53.38 28.12

S 4I 1.44 0.33 5.08 4.94 0.42 0.40 1.27 96.19 0.18 13.31 92.60 73.07 0.31 0.31 1.15 1.17 0.35 0.33 1.20 83.14

hybrid
S 1 0.34 0.33 0.35 0.34 8.90 18.90 26.83 22.08 0.18 0.20 0.17 1.26 0.34 0.34 5.64 4.47 12.74 12.65 32.49 30.09

MMRR S 2 0.34 0.33 1.40 0.34 8.29 8.33 5.04 4.91 0.18 0.20 1.29 1.95 0.34 0.34 1.25 1.27 3.01 3.16 12.01 8.42

S 3 0.34 0.33 1.40 0.34 29.23 34.45212.76110.38 0.18 0.20 2.53 6.69 0.34 0.34 0.32 1.27 7.29 7.34 37.32 22.81

Nikkei 225 and HIS compared to other countries’ indices. Although the hybrid model shows
outstanding performance compared with the ARIMA-ARCH model, extremely large values of RMSE
are shown in not a few indices in the hybrid model (e.g., Nikkei 225’s yh, yl, SSE’s yh, yl, and HSI’s yl).
Thus, we focus on the ARIMA-ARCH model. In short, the ARIMA-ARCH model with the MMRR
method based on S2 outperforms for overall forecasting performances and stability as shown Table
6, where the bold numbers indicate the best performance among the four types of sum of squares in
ARIMA-ARCH model.

Our methods predict the diction of the stock indices based on not only statistical strategy (i.e.,
our method) but also the practical method that is used in real stock market (i.e., candle chart form
given as Figure 5). Incorporating the various information may lead to outstanding performance to
predict index direction. We can expect that the proposed method will be a useful tool to predict
the stock index in real market. Furthermore, our method is useful for non-specialist in statistics
and financial engineering, since the proposed method based on not complex mathematics theory but
practical viewpoint based on symbolic data analysis.

5. Concluding Remarks

We have introduced a new type of symbolic data, the candle chart-valued time series by aggregating
open, close, highest, and lowest stock indices. We have also proposed novel approaches for fitting
time series model to candle chart-valued time series, and three types of sum of squares for estimation
of time series models. We can forecast the future candle chart form and direction of stock index from
the fitted values of stock indices composing the candle chart. We have observed through forecast-
ing results of the stock market indices of five major Asian countries’ that the proposed approaches
outperform for forecasting future stock indices compared with classical data analysis approaches.

In this study, we have focused that the candle chart can be seen as a symbolic data and introduced
novel approaches to forecast index and its direction from the practical viewpoint. Thus, the theoret-
ical parts and explanations have been omitted. Further work remains to be done towards theoretical
approaches and constructing a statistical methodology for the candle chart-valued time series, such
as the lasso-type regularization (Giordani, 2011) and lag weighted lasso (Park and Sakaori, 2013).
As shown in Section 3, our methods cannot perform well for predicting the Nikkei 225 and HIS. In
order to effectively use the proposed method, the reason for poor result should be clarified. This study
can be extended to analysis of various counties’ stock indices and the cause of the poor results can
be investigated based on the analysis results. Furthermore, we have applied the ARMA (or ARIMA)
model with the ARCH error in the study. To improve the forecast accuracy, this study can be extended
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to various time series models, i.e., the general autoregressive conditional heteroskedasticity (GARCH)
model and the space state model.
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