• Title/Summary/Keyword: Time-invariant Linear system

Search Result 199, Processing Time 0.028 seconds

Exponential Stability of Predictor Feedback for Discrete-Time Linear Systems with Input Delays (입력 지연을 갖는 이산시간 선형 시스템을 위한 예측기 피드백의 지수적 안정성)

  • Choi, Joon-Young
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.7
    • /
    • pp.583-586
    • /
    • 2013
  • We consider discrete-time LTI (Linear Time-Invariant) systems with constant input delays. The input delay is modeled by a first-order PdE (Partial difference Equation) and a backstepping transformation is employed to design a predictor feedback controller. The backstepping approach results in the construction of an explicit Lyapunov function, with which we prove the exponential stability of the closed-loop system formed by the predictor feedback. The numerical example demonstrates the design of the predictor feedback controller, and illustrates the validity of the exponential stability.

A New Approach to Design of a Dynamic Output Feedback Stabilizing Control Law for LTI Systems

  • Son Young-Ik;Shim Hyungbo;Jo Nam-Hoon;Kim Kab-Il
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.2
    • /
    • pp.618-624
    • /
    • 2005
  • We present a new state-space approach to construct a dynamic output feedback controller which stabilizes a class of linear time invariant systems. All the states of the given system are not measurable and only the output is used to design the stabilizing control law. In the design scheme, however, we first assume that the given system can be stabilized by a feedback law composed of the output and its derivatives of a certain order. Beginning with this assumption, we systematically construct a dynamic system which removes the need of the derivatives. The main advantage of the proposed controller is regarding the controller order, which may be smaller than that of conventional output feedback controller. Using a simple numerical example, it is shown that the order of the proposed controller is indeed smaller than that of reduced-order observer based output feedback controller.

Active Vibration Control of Structure Using LMI Optimization Design of Robust Saturation Controller (강인 포화 제어기의 LMI 최적 설계를 이용한 구조물의 능동 진동 제어)

  • Park, Young-Jin;Moon, Seok-Jun;Lim, Chae-Wook
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.3 s.108
    • /
    • pp.298-306
    • /
    • 2006
  • In our previous paper, we developed a robust saturation controller for the linear time-invariant (LTI) system involving both actuator's saturation and structured real parameter uncertainties. This controller can only guarantee the closed-loop robust stability of the system in the presence of actuator's saturation. But we cannot analytically make any comment on control performance of this controller. In this paper, we suggest a method to use linear matrix inequality (LMI) optimization problem which can analytically explain control performance of this robust saturation controller only in nominal system. The availability of design method using LMI optimization problem for this robust saturation controller is verified through a numerical example for the building with an active mass damper (AMD) system.

Study on the Dynamic Characteristics of a Manual Transmission Using Linear Models (선형모델을 이용한 수동변속기의 동적 특성 연구)

  • Yoon, Jong-Yun;Lee, Iljae
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.240-248
    • /
    • 2013
  • Torsional vibrations, such as the gear rattle of the manual transmission in vehicle systems, are correlated with the firing stroke from the engine. These vibro-impacts can be examined based upon linear time-invariant analysis. In order to understand the gear dynamics, a specific manual transmission with a front-engine front-wheel drive configuration is investigated. A method to reduce the degrees of freedom is suggested based upon the eigensolutions and frequency response functions, which will lead to the development of an efficient matrix size. The dynamic characteristics of single- and dual-mass flywheels are then compared. The effect of the dual-mass flywheel is investigated based upon the mobility analysis, which will lead to understanding of the concepts for avoiding vibro-impacts. A linear time-invariant system model is examined by employing the effective clutch stiffness from a two-stage clutch damper. Thus, the relationship between the dynamic characteristics and the clutch damper can be predicted by assuming a combination of different stage stiffness levels.

Absolutely Stable Region for Missile Guidance Loop (유도탄 유도루프의 절대안정한 시간영역)

  • Kim, Jong-Ju;Lyou, Joon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.244-249
    • /
    • 2008
  • In this paper, the stable region for missile guidance loop employing an integrated proportional navigation guidance law is derived. The missile guidance loop is formulated as a closed-loop control system consisting of a linear time-invariant feed-forward block and a time-varying feedback gain. By applying the circle criterion to the system, a bound for the time of flight up to which stability can be assured is established as functions of flight time. Less conservative results, as compared to the result by Popov criterion, are obtained.

On Choice of Kautz functions Pole and its Relation with Accuracy in System Identification

  • Bae, Chul-Min;Wada, Kiyoshi;Imai, Jun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1999.10a
    • /
    • pp.125-128
    • /
    • 1999
  • A linear time-invariant model can be described either by a parametric model or by a nonparametric model. Nonparametric models, for which a priori information is not necessary, are basically the response of the dynamic system such as impulse response model and frequency models. Parametric models, such as transfer function models, can be easily described by a small number of parameters. In this paper aiming to take benefit from both types of models, we will use linear-combination of basis fuctions in an impulse response using a few parameters. We will expand and generalize the Kautz functions as basis functions for dynamical system representations and we will consider estimation problem of transfer functions using Kautz function. And so we will present the influences of poles settings of Kautz function on the identification accuracy.

  • PDF

Receding horizon controller deign for fuzzy systems with input constraints

  • Jeong, Seung-Cheol;Choi, Doo-Jin;Park, Poo-Gyeon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.83.4-83
    • /
    • 2002
  • $\bullet$ We present a state-feedback RHC for discrete-time TS fuzzy systems with input constriants. $\bullet$ The controller employ the current and one-step past information on the fuzzy weighting functions. $\bullet$ It is obtained from the finite horizon optimization problem with the invariant ellipsoid constraint $\bullet$ Under parameterized LMI conditions on the terminal weighting matrix $\bullet$ The closed-loop system stability is guaranteed. $\bullet$ The parameterized linear matrix inequalities are relaxed to a finite number of solvable LMIs.

  • PDF

MRAC방식에 의한 산업용 로보트 매니퓰레이터의 실시간 제어를 위한 견실한 제어기 설계

  • 한성현;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.160-165
    • /
    • 1989
  • This paper deals with the robust controller design of robotic manipulator to track a desired trajectory in spite of the presence of unmodelled dynamics in cause of nonlinearity and parameter uncertainty. The approach followed in this paper is based on model reference adaptive control technique and convergence on hyperstability theory but it does away with assumption that process is characterized by a linear model remaining time invariant during adaptation process. A computer simulation has been performed to demonstrate the performance of the designed control system in task coordinates for stanford manipulator with payload and disturbances.

  • PDF

New UIO(unknown input observer) using dynamic observer design (동적 관측자 설계 법을 이용한 새로운 UIO(unknown input observer))

  • 김찬희;박종구
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.193-193
    • /
    • 2000
  • This paper proposes a dynamic observer that is applicable to linear time-invariant systems subject to unknown input, The proposed method utilities Che output feedback control structure to design unknown input observer. We name it as the dynamic unknown input observer(UIO). The dynamic UIO can be designed easily over the usual static UIO, and the system response could be improved.

Robustness Analysis of Closed-Loop Poles (페루프 극점의 견실성 해석)

  • Lee, Jung-Moon;Nam, Boo-Hee
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.107-114
    • /
    • 1991
  • This paper deals with the robustness of closed-loop poles of a linear time-invariant system with uncertain parameters. A new method is presented to calculate the perturbation of a pole-located region due to parameter uncertainties. A method to calculate allowable bounds on parameter uncertainties is also presented to retain closed-loop poles in a specified region. Based on Lyapunov equations and norm operations, they provide useful measures on the robustness of closed-loop poles. An example is given to illustrate proposed methods.

  • PDF