• Title/Summary/Keyword: Time-delay and beam-steering

Search Result 12, Processing Time 0.032 seconds

A Study on Configuration of True Time Delay Phase Shifter for Wideband Beam Steering Phased Array Antenna (광대역 빔 조향을 위한 위상 배열 안테나의 실시간 지연 위상 천이기 구성에 관한 연구)

  • Jung, Jinwoo;Ryu, Jiho;Park, Jaedon;Seo, Jongwoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.20 no.3
    • /
    • pp.413-420
    • /
    • 2017
  • We investigate the performance of a true time delay(TTD) phase shifter to reduce the beam squint caused by frequency changes of a phased array antenna in wideband communication systems. To design a high gain phased array antenna, we need a long TTD, which causes high RF loss, low resolution and large dimension of TTD phase shifters. To overcome the problems, we propose a schematic of dual TTD phase shifters, which consists of short time delay(STD) in radio frequency(RF) part and long time delay(LTD) in intermediate frequency(IF) part. Our analysis results show that the proposed scheme reduces the required bits and delay time in RF band of the TTD compared to the conventional single TTD scheme.

Efficient Beam Steering Techniques in the Fixed Station (고정국에서의 효율적인 빔스티어링 기법)

  • Choi, Jun-sug;Hur, Chang-wu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.05a
    • /
    • pp.826-828
    • /
    • 2015
  • In this paper, Propose an efficient method that can operate at fixed stations Beam-Steering. Typical Beam-Forming techniques are performed using a delay time between the signal reaching each antenna array. The Beam-Forming method requires a lot of complexity and cost. This paper suggest a Beam-Steering method using a signal-to-noise ratio and a received signal strength. Analyzes the algorithm about proposed method.

  • PDF

Optically Driven Phased Array Antenna (광섬유를 이용한 위상 배열 안테나)

  • Kim, Tae-Sun;Seo, Chul-Hun
    • Proceedings of the KIEE Conference
    • /
    • 1998.11c
    • /
    • pp.981-983
    • /
    • 1998
  • In this paper, we present theoretical designs for a beam steering phased array antenna that uses a true time delay optical feeder. A variable true time delay is achieved by employing one tunable laser source and high dispersion fibers with different length. The wavelength tunable optical carrier propagation in a high-dipersion fiber realizes a true time delay, with the steering direction set by a single voltage controlling the wavelength. Beamsteering of a phased array antenna is obtained by controlling the tunable laser source. An employment of a high dispersion fiber response shows wide-band operation of beem steering antenna system.

  • PDF

A Study of 0.5-bit Resolution for True-Time Delay of Phased-Array Antenna System

  • Cha, Junwoo;Park, Youngcheol
    • International journal of advanced smart convergence
    • /
    • v.11 no.4
    • /
    • pp.96-103
    • /
    • 2022
  • This paper presents the analysis of increasing the resolution of True-Time-Delay (TTD) by 0.5-bit for phased-array antenna system which is one of the Multiple-Input and Multiple Output (MIMO) technologies. For the analysis, a 5.5-bit True-Time Delay (TTD) integrated circuit is designed and analyzed in terms of beam steering performance. In order to increase the number of effective bits, the designed 5.5-bit TTD uses Single Pole Triple Throw (SP3T) and Double Pole Triple Throw (DP3T) switches, and this method can minimize the circuit area by inserting the minimum time delay of 0.5-bit. Furthermore, the circuit mostly maintains the performance of the circuit with the fully added bits. The idea of adding 0.5-bit is verified by analyzing the relation between the number of bits and array elements. The 5.5-bit TTD is designed using 0.18 ㎛ RF CMOS process and the estimated size of the designed circuit excluding the pad is 0.57×1.53 mm2. In contrast to the conventional phase shifter which has distortion of scanning angle known as beam squint phenomenon, the proposed TTD circuit has constant time delays for all states across a wide frequency range of 4 - 20 GHz with minimized power consumption. The minimum time delay is designed to have 1.1 ps and 2.2 ps for the 0.5-bit option and the normal 1-bit option, respectively. A simulation for beam patterns where the 10 phased-array antenna is assumed at 10 GHz confirms that the 0.5-bit concept suppresses the pointing error and the relative power error by up to 1.5 degrees and 80 mW, respectively, compared to the conventional 5-bit TTD circuit.

Design of Microstrip Antenna for Satellite Navigation System Jamming

  • Shin, Jae Yoon;Park, Chong Hwan;Woo, Jong Myung
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.7 no.1
    • /
    • pp.37-42
    • /
    • 2018
  • This paper proposed a microstrip antenna that can perform jamming of satellite signals from the GPS L5, GLONASS G3, BDS B2 frequency bands (1164 - 1217 MHz) that are employed mainly for military purposes among the GNSS frequencies using unmanned aircrafts over the enemy's sky in time of emergency. The single element in the proposed antenna can be easily mounted to unmanned aircrafts. This study analyzed the characteristics of miniaturization and beam of radiating elements by applying the image theories and perturbation effect to satisfy the uniform level at ${\pm}45^{\circ}$ of beam steering goal due to the phase delay after antenna array. The designed microstrip antenna had a miniaturized radiating element area (x-y plane), which was reduced by 76.3% compared to that of basic microstrip antenna, and its beam width was $190^{\circ}$ in the E-plane and $140^{\circ}$ in the H plane. In addition, the simulation was conducted to determine the characteristics due to the phase delay by arranging the designed single microstrip antenna by $1{\times}4$ array and the results showed that beam steering of ${\pm}45^{\circ}$ is possible in the H-plane on the basis of $0^{\circ}$. Thus, the proposed antenna was verified to be effective in satellite signal jamming in the air as it was attached to the lower end of unmanned aircrafts.

Analysis of the Ultrasonic Beam Profile Due to Variation of the Inter-Element Spacing for the Phased Array Transducer (페이즈드 어레이 트랜스듀서에 있어서 구성 압전소자의 간격 변화에 따른 초음파 빔 전파 특성 해석)

  • Choe, Sang-U;Lee, Jun-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.4 s.175
    • /
    • pp.972-981
    • /
    • 2000
  • The phased array transducer has two distinct advantages. One is rapid scanning comparing with the conventional mechanical or manual scanning system. Therefore, output image is represented in real-time. The other is the dynamic focusing and the dynamic steering of ultrasonic beam. Only the delay times that are controlled electrically are used to focus and to steer beam without any lenses or wedges. In this study, the profile of the ultrasonic beam for the phased array transducer has been simulated in the Huygens principle with varying the inter-element spacing of the linear phased array transducer. From the result of this study, it was found that the ultrasonic beam spread wider as the inter-element spacing was decreased. However, the focusing effect was improved, even when the number of the element was not big. In addition, there was grating lobes that are constructed when the inter-element spacing is more than half wavelength. However, this grating lobe has lower amplitude than the main lobe.

Numerical Analysis of Ultrasonic Beam Profile Due to the Change of the Number of Piezoelectric Elements for Phased Array Transducer (Phased Array트랜스듀서에 있어서 구성 압전소자수의 변화에 따른 초음파 빔 전파 특성의 수치 해석)

  • Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.19 no.3
    • /
    • pp.207-216
    • /
    • 1999
  • A phased array is a multi-element piezoelectric device whose elements are individually excited by electric pulses at programmed delay time. One of the advantages of using phased array in nondestructive evaluation (NDE) application over conventional ultrasonic transducers is their great maneuverability of ultrasonic beam. There are some parameters such as the number and the size of the piezoelectric elements and the inter-element spacing of the elements to design phased array transducer. In this study, the characteristic of ultrasonic beam for phased array transducer due to the variation of the number of elements has been simulated for ultrasonic SH-wave on the basis of Huygen's principle. Ultrasonic beam directivity and focusing due to the change of time delay of each element were discussed due to the change of the number of piezoelectric elements. It was found that ultrasonic beam was much more spreaded and hence its sound pressure was decreased as steering angle of ultrasonic beam was increased. In addition, the ability of ultrasonic bean focusing decreased gradually with the increase of focal length at the same piezoelectric elements. However, the ability of beam focusing was improved as the number of consisting elements was increased.

  • PDF

Analysis of TTD Phase Delay Error and Its Effect on Phased Array Antenna due to Impedance Mismatch (위상 배열 안테나 임피던스 부정합에 따른 실시간 지연회로의 위상 지연 오차 및 영향 분석)

  • Yoon, Minyoung;Nam, Sangwook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.828-833
    • /
    • 2018
  • It is well known that reflected waves and resonance affect phase distortion. In addition, phase delay can be distorted by antenna impedance. In this study, we analyze the phase delay variation caused by the antenna impedance, considering mutual coupling effects. In addition, we confirm the beam steering characteristics. When was -10 dB and -7 dB, the maximum phase delay error was $18.5^{\circ}$ and $26.5^{\circ}$, respectively. The Monte Carlo simulation with an eight-element linear array antenna demonstrated that the RMS error of the beam steering angle ranged from $0.19^{\circ}$ to $0.4^{\circ}$, and the standard deviation ranged from $0.14^{\circ}$ to $0.33^{\circ}$ when the beam steering angle was in the range of $0^{\circ}$ to $30^{\circ}$, with the uniformly distributed phase error of $18.5^{\circ}$ and $26.5^{\circ}$. The side lobe level increased from 0.74 dB to 1.21 dB by the phase error from the theoretical value of -12.8 dB, with a standard deviation of 0.31 dB to 0.51 dB. This is verified by designing an eight-element spiral array antenna.

Robust variable range focusing with a virtual source array using the waveguide invariant in underwater (수중에서의 도파관 불변성을 이용한 가상 음원 배열 기반의 다양한 거리 방향으로의 강인한 집속)

  • Byun, Gi Hoon;Kim, J.S.
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.1
    • /
    • pp.23-29
    • /
    • 2017
  • A concept of a VSA (Virtual Source Array) is the method for an acoustic spatio-temporal focus at a selected location in the outbound direction with respect to the VSA without the need of a probe source as combines a TRP (Time-Reversal Processing) and time-delay and beam-steering. However, in TRP using the VSA concept, it is limited to the critical angle and the short distances relevant to the VSA. In this paper, the waveguide invariant theory is applied to the VSA concept to refocus the received field at ranges greater other than the critical angle and the short ranges by shifting the focused field. The suggested method is verified via numerical simulation, and the results show that the robust acoustic focusing is achieved on the selected location regardless of the limitation on the conventional VSA concept.

Design of a 10 GHz Phased-Array Antenna Using CFG True Time-Delays (CFG 실 시간지연 선로를 사용한 10 GHz 위상 배열 안테나의 설계)

  • 이갑용;최연봉;신종덕;김부균;이상배
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3C
    • /
    • pp.241-247
    • /
    • 2002
  • In this paper, we proposed a continuously variable true time-delay for transmit linear phased-array antenna sing chirped fiber gratings(CFGs) and a tunable laser source. Average group delay-slope of the CFG was treasured to be 177 ps/nm at L-, S-, and X-band. Simulation results show that the maximum gain of the transmit linear phased-array antenna with the beam steering angle of 180$^{\circ}$ is 11.6 dB at 10 GHz.