DOI QR코드

DOI QR Code

Robust variable range focusing with a virtual source array using the waveguide invariant in underwater

수중에서의 도파관 불변성을 이용한 가상 음원 배열 기반의 다양한 거리 방향으로의 강인한 집속

  • 변기훈 (한국해양과학기술원-한국해양대학교 해양과학기술전문대학원) ;
  • 김재수 (한국해양대학교 해양공학과)
  • Received : 2016.11.30
  • Accepted : 2017.01.25
  • Published : 2017.01.31

Abstract

A concept of a VSA (Virtual Source Array) is the method for an acoustic spatio-temporal focus at a selected location in the outbound direction with respect to the VSA without the need of a probe source as combines a TRP (Time-Reversal Processing) and time-delay and beam-steering. However, in TRP using the VSA concept, it is limited to the critical angle and the short distances relevant to the VSA. In this paper, the waveguide invariant theory is applied to the VSA concept to refocus the received field at ranges greater other than the critical angle and the short ranges by shifting the focused field. The suggested method is verified via numerical simulation, and the results show that the robust acoustic focusing is achieved on the selected location regardless of the limitation on the conventional VSA concept.

가상 음원 배열 개념은 시역전 처리에 시지연 빔조향 기법을 적용함으로써 가상 음원 배열로부터 나아가는 방향에 해당하는 선택된 위치에 음원 없이도 음파의 시 공간적 집속을 수행하는 방법이다. 하지만 가상 음원 배열 개념을 이용한 시역전 처리 방법은 가상 음원 배열에 해당하는 임계각 및 근거리를 벗어나는 범위로의 음파 집속이 불가능하다는 제약 조건이 따른다. 본 논문에서는 이러한 제약 조건을 해결하기 위해, 도파관 불변성 이론을 가상 음원 배열 개념에 적용하여 집속 음장의 수평 방향으로의 이동을 통해 임계각 및 근거리를 벗어나는 구간으로의 음파 집속 방법에 대한 연구를 수행하였다. 수치 실험의 결과를 통해 본 연구의 타당성을 검증하였으며, 기존의 가상 음원 배열 개념의 제약 조건에 관계없이 선택된 위치에서의 강인한 음파 집속 성능의 결과를 보였다.

Keywords

References

  1. W. A. Kuperman, W. S. Hodgkiss, and H. C. Song, "Phase conjugation in the ocean: Experimental demonstration of an acoustic time-reversal mirror," J. Acoust. Soc. Am. 103, 25-40 (1997).
  2. W. S. Hodgkiss, H. C. Song, and W. A. Kuperman, "A long-range and variable focus phase-conjugation experiment in shallow water," J. Acoust. Soc. Am. 105, 1597-1604 (1998).
  3. H. C. Song, W. S. Hodgkiss, W. A. Kuperman, W. J. Higley, K. Raghukumar, T. Akal, and M. Stevenson, "Spatial diversity in passive time reversal communications," J. Acoust. Soc. Am. 120, 2067-2076 (2006). https://doi.org/10.1121/1.2338286
  4. J. R. Yoon, M. K. Park, and Y. J. Ro, "Bit error parameters on passive phase conjugation underwater acoustic communication" (in Korean), J. Acoust. Soc. Kr. 24, 454-461 (2005).
  5. M. J. Eom, J. S. Kim, J.-H. Cho, H. Y. Kim, and I. I. Sung, "Algorithm and experimental verification of underwater acoustic communication based on passive timereversal mirror" (in Korean), J. Acoust. Soc. Kr. 33, 392-399 (2014). https://doi.org/10.7776/ASK.2014.33.6.392
  6. S. Kim, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, G. F. Edelmann, and T. Akal, "Echo-to-reverberation enhancement using a time reversal mirror," J. Acoust. Soc. Am. 115, 1525-1531 (2004). https://doi.org/10.1121/1.1649737
  7. H. C. Song, S. Kim, W. S. Hodgkiss, and W. A. Kuperman, "Environmentally adaptive reverberation nulling using a time reversal mirror," J. Acoust. Soc. Am. 116, 762-768 (2004). https://doi.org/10.1121/1.1765194
  8. S. C. Walker, P. Roux, and W. A. Kuperman, "Synchronized time-reversal focusing with application to remote imaging from a distant virtual source array," J. Acoust. Soc. Am. 125, 3828-3834 (2009). https://doi.org/10.1121/1.3117374
  9. Z. B. Yu, H. F. Zaho, X. Y. Gong, and N. R. Chapman, "Time-reversal mirror-virtual source array method for acoustic imaging of proud and buried targets," IEEE J. Ocean Eng. 41, 382-394 (2016). https://doi.org/10.1109/JOE.2015.2460851
  10. H. C. Song, P. Roux, T. Akal, G. Edelmann, W. Higley, W. S. Hodgkiss, W. A. Kuperman, K. Raghukumar, and M. Stevenson, "Time reversal ocean acoustic experiments at 3.5 kHz: applications to active sonar and undersea communications," in Proc. AIP, 522-529 (2009).
  11. G. H. Byun and J. S. Kim, "Robust focusing in timereversal mirror with a virtual source array," J. Acoust. Soc. Am. 136, 2148 (2014).
  12. F. B. Jensen, W. A. Kuperman, M. B. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics, New York, 1994), pp. 42-46.
  13. S. Kim, G. F. Edelmann, W. A. Kuperman, W. S. Hodgkiss, and H. C. Song, "Spatial resolution of time-reversal arrays in shallow water," J. Acoust. Soc. Am. 110, 820-829 (2001). https://doi.org/10.1121/1.1382619
  14. H. C. Song, W. A. Kuperman, and W. S. Hodgkiss, "A time-reversal mirror with variable range focusing," J. Acoust. Soc. Am. 103, 3234-3240 (1998).
  15. G. L. D'Spain, and W. A. Kuperman, "Application of waveguide invariants to analysis of spectrograms from shallow water environments that vary in rage and azimuth," J. Acoust. Soc. Am. 106, 2454-2468 (1999). https://doi.org/10.1121/1.428124
  16. S. Kim, W. A. Kuperman, W. S. Hodgkiss, H. C. Song, G. F. Edelmann, and T. Akal, "Robust time reversal focusing in the ocean," J. Acoust. Soc. Am. 114, 145-157 (2003). https://doi.org/10.1121/1.1582450
  17. M. B. Porter, "The KRAKEN normal mode program," SACLANT Undersea Research Centre. 1992.

Cited by

  1. Virtual Source Array-Based Multiple Time-Reversal Focusing vol.8, pp.1, 2018, https://doi.org/10.3390/app8010099