• Title/Summary/Keyword: Time-Discretization

Search Result 257, Processing Time 0.028 seconds

Numerical Dispersive Characteristics and Stability Condition of the Multi-Resolution Time Domain(MRTD) Method (다해상도 시간영역법의 수치적 분산특성과 안정조건)

  • 홍익표;유태훈;윤영중;박한규
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.7 no.4
    • /
    • pp.328-335
    • /
    • 1996
  • The numerical dispersive characteristics and the numerical stability confition of the Multi-Resolution Time-Domain(MRTD) method are calculated. A dispersion analysis of the MRTD schemes including a comparison to Yee's Finite-Difference Time-Domain(FDTD) method is given. The superiority of the MRTD method to the spatial discretization is shown. The required computational memory can be reduced by using the MRTD method. We expect that the MRTD method will be very useful method for numerical modelling of electromagnetics.

  • PDF

Time-optimal multistage controllers from the theory of dynamical cell-to-cell mappings

  • Yoon, Joong-Sun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1989.10a
    • /
    • pp.118-123
    • /
    • 1989
  • This work deals with fast-to-compute global control laws for time-optimal motion of strongly nonlinear dynamic systems like resolute robots. the theory of cell-to-cell mappings for dynamical systems offer the possibility of doing the vast majority of the control law computation offline in case of time optimization with constrained inputs. These cells result from a coarse discretization of likely swaths of state space into a set of nonuniform, contiguous volumes of relatively simple shapes. Once the cells have been designed, the bang-bang schedules for the inputs are determined for all likely starting cells and terminating cells. the resulting control law is an open-loop optimal control law with feedback monitoring and correction.

  • PDF

Fault Pattern Extraction Via Adjustable Time Segmentation Considering Inflection Points of Sensor Signals for Aircraft Engine Monitoring (센서 데이터 변곡점에 따른 Time Segmentation 기반 항공기 엔진의 고장 패턴 추출)

  • Baek, Sujeong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.44 no.3
    • /
    • pp.86-97
    • /
    • 2021
  • As mechatronic systems have various, complex functions and require high performance, automatic fault detection is necessary for secure operation in manufacturing processes. For conducting automatic and real-time fault detection in modern mechatronic systems, multiple sensor signals are collected by internet of things technologies. Since traditional statistical control charts or machine learning approaches show significant results with unified and solid density models under normal operating states but they have limitations with scattered signal models under normal states, many pattern extraction and matching approaches have been paid attention. Signal discretization-based pattern extraction methods are one of popular signal analyses, which reduce the size of the given datasets as much as possible as well as highlight significant and inherent signal behaviors. Since general pattern extraction methods are usually conducted with a fixed size of time segmentation, they can easily cut off significant behaviors, and consequently the performance of the extracted fault patterns will be reduced. In this regard, adjustable time segmentation is proposed to extract much meaningful fault patterns in multiple sensor signals. By considering inflection points of signals, we determine the optimal cut-points of time segments in each sensor signal. In addition, to clarify the inflection points, we apply Savitzky-golay filter to the original datasets. To validate and verify the performance of the proposed segmentation, the dataset collected from an aircraft engine (provided by NASA prognostics center) is used to fault pattern extraction. As a result, the proposed adjustable time segmentation shows better performance in fault pattern extraction.

The Analysis of Hatch Corner by the Coupling Method of F.E.M and B.E.M (유한요소법과 경계요소법의 결합해법에 의한 HATCH CORNER 해석)

  • Chang-Yull,Kim;Soo-Lyong,Lee;Jung-Sin,Che
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.24 no.3
    • /
    • pp.25-34
    • /
    • 1987
  • Whereas the finite element method is well established today, the boundary element method is a fairly recent development. Both are general-purpose methods for the solution of various structural analysis problem. The B.E.M has several potential advantages relative to the F.E.M. One of them is that the number of unknowns in algebraic system obtained by discretization is proportional to the number of boundary nodes. Anothor advantage is the ease of discretization and input data preparation. However, the B.E.M. always leads to a fully populated and unsymmetric system of equations. Even though the number of degree-of-freedom is reduced as compared with F.E.M, since nodes exist on the boundary only in the B.E.M, to follow that the effort to solve the equations can be greater. It has been shown also that the time spent in setting up the coefficient matrix is a significant and can, in some cases, be greater than the time required to solve the equation. Thus, one can naturally consider the idea that two methods should be coupled, then the advantages of both methods can be taken. And further, by using this coupling method the HATCH CORNER was analyzed to give initial design data.

  • PDF

Optimal control formulation in the sense of Caputo derivatives: Solution of hereditary properties of inter and intra cells

  • Muzamal Hussain;Saima Akram;Mohamed A. Khadimallah;Madeeha Tahir;Shabir Ahmad;Mohammed Alsaigh;Abdelouahed Tounsi
    • Steel and Composite Structures
    • /
    • v.48 no.6
    • /
    • pp.611-623
    • /
    • 2023
  • This work considered an optimal control formulation in the sense of Caputo derivatives. The optimality of the fractional optimal control problem. The tumor immune interaction in fractional form provides an excellent tool for the description of memory and hereditary properties of inter and intra cells. So the interaction between effector-cells, tumor cells and are modeled by using the definition of Caputo fractional order derivative that provides the system with long-time memory and gives extra degree of freedom. In addiltion, existence and local stability of fixed points are investigated for discrete model. Moreover, in order to achieve more efficient computational results of fractional-order system, a discretization process is performed to obtain its discrete counterpart. Our technique likewise allows the advancement of results, such as return time to baseline that are unrealistic with current model solvers.

Large Eddy simulation using P2P1 finite element formulation (P2P1 유한요소를 이용한 LES)

  • Choi, Hyoung-Gwon;Nam, Young-Sok;Yoo, Jung-Yul
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.386-391
    • /
    • 2001
  • A finite element code based on P2P1 tetra element has been developed for the large eddy simulation (LES) of turbulent flows around a complex geometry. Fractional 4-step algorithm is employed to obtain time accurate solution since it is less expensive than the integrated formulation, in which the velocity and pressure fields are solved at the same time. Crank-Nicolson method is used for second order temporal discretization and Galerkin method is adopted for spatial discretization. For very high Reynolds number flows, which would require a formidable number of nodes to resolve the flow field, SUPG (Streamline Upwind Petrov-Galerkin) method is applied to the quadratic interpolation function for velocity variables, Noting that the calculation of intrinsic time scale is very complicated when using SUPG for quadratic tetra element of velocity variables, the present study uses a unique intrinsic time scale proposed by Codina et al. since it makes the present three-dimensional unstructured code much simpler in terms of implementing SUPG. In order to see the effect of numerical diffusion caused by using an upwind scheme (SUPG), those obtained from P2P1 Galerkin method and P2P1 Petrov-Galerkin approach are compared for the flow around a sphere at some Reynolds number. Smagorinsky model is adopted as subgrid scale models in the context of P2P1 finite element method. As a benchmark problem for code validation, turbulent flows around a sphere and a MIRA model have been studied at various Reynolds numbers.

  • PDF

A step-by-step approach in the time-domain BEM formulation for the scalar wave equation

  • Carrer, J.A.M.;Mansur, W.J.
    • Structural Engineering and Mechanics
    • /
    • v.27 no.6
    • /
    • pp.683-696
    • /
    • 2007
  • This article is concerned with the presentation of a time-domain BEM approach applied to the solution of the scalar wave equation for 2D problems. The basic idea is quite simple: the basic variables of the problem at time $t_n$ (potential and flux) are computed with the results related to the potential and to its time derivative at time $t_{n-1}$ playing the role of "initial conditions". This time-marching scheme needs the computation of the potential and its time derivative at all boundary nodes and internal points, as well as the entire discretization of the domain. The convolution integrals of the standard time-domain BEM formulation, however, are not computed; the matrices assembled, only at the initial time interval, are those related to the potential, flux and to the potential time derivative. Two examples are presented and discussed at the end of the article, in order to verify the accuracy and potentialities of the proposed formulation.

Input Time-Delay Compensation for a Nonlinear Control System

  • Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.395-400
    • /
    • 2004
  • In most physical processes, the transfer function includes time-delay, and in the general distributed control system using computer network, there exists inherent time-delay caused by the spatial separation between controllers and actuators. This work deals with the synthesis of a discrete-time controller for a nonlinear system and proposes a new effective method to compensate the influence of input time-delay. The controller is synthesized by using input/output linearization. Under the circumstance that input time-delay exists, the system response has more overshoot and tends to diverge. For these reasons, the controller has to produce future input value that will be needed for the system. In order to calculate the future input value, some predictors are adopted. Using the discretization via Euler's method, numerical simulations about the Van der Pol system are performed to evaluate the performance of the proposed method.

  • PDF

Design of a controller for input time-delay nonlinear system

  • Choi, Hyung-Jo;Choi, Yong-Ho;Chong, Kil-To
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.548-552
    • /
    • 2005
  • In most physical processes, the transfer function includes a time-delay, and in the general distributed control system using a computer network, an inherent time-delay exists due to the spatial separation between controllers and actuators. Under the circumstance where an input time-delay exits, the system response overshoots and tends to diverge. For this reasons described above, a controller design method is proposed for a discrete nonlinear system including input time-delay, which adopts the time-discretization using Taylor series. Controllers are synthesized using an input/output linearization method. Finally, several cases of the computer simulations were conducted, and the results validate the proposed methods.

  • PDF

Modeling of a Continuous-Time System with Time-delay

  • Park, Jong-Jin;Choi, Guy-Seok
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.4 no.2
    • /
    • pp.1-6
    • /
    • 2012
  • Control Theory for continuous-time system has been well developed. Due to the development of computer technology, digital control scheme are employed in many areas. When delays are in control systems, it is hard to control the system efficiently. Delays by controller-to-actuator and sensor-to-controller deteriorate control performance and could possibly destabilize the overall system. In this paper, a new approximated discretization method and digital design for control systems with multiple state, input and output delays and a generalized bilinear transformation method with a tunable parameter are also provided, which can re-transform the integer time-delayed discrete-time model to its continuous-time model. Illustrative examples are given to demonstrate the effectiveness of the developed method.