
ICCAS2004                       August 25-27, The Shangri-La Hotel, Bangkok, THAILAND  

1. INTRODUCTION 

Time-delay occurs in control systems when there is a delay 

between the commanded response and the start of the output 

response [1]. It is caused by distance of time and space 

existing among the components of the control system. 

Time-delay in a control system decreases gain margin and 

phase margin; in conclusion, it deteriorates performance of the 

control system and makes the system unstable. Time-delay has 

primarily been studied in the field of process control, but the 

importance of research about time-delay is rising now because 

of the development of remote control systems through 

networks [2-4]. 

Much research has been done about linear systems in the 

continuous time domain limitedly, while practical physical 

systems have nonlinearity inherently. Recently, most of 

control systems are designed by using digital computer. 

Therefore, it is important to analyze nonlinear system with 

time-delay and design a controller in discrete time domain. 

In order to remove the time-delay effect, Pade’s 

approximation method was proposed. It is a controller 

synthesis scheme to analyze system and design controller 

including approximated dynamic model of time-delay element 

[5]. 

A stabilizing method was proposed for a force-reflection 

remote robot system. It provides inertia moment constraint and 

gain range of reflected torque to make the reflected torque of 

the master/slave system converge to zero. This method offers 

an easy way to design controller for the force-reflection 

system and focuses on improvement of relative stability [6].    

Predictive control is the representative approach for the 

time-delay. In the field of process control, methods using 

Smith predictor have been proposed. It eliminates the affect of 

time-delay algebraically in the closed loop transfer function by 

modeling of system and time-delay. The Smith predictor can 

make us treat a system as if it has no time-delay and design 

controller for the system. This method is a structural 

time-delay compensation scheme, but there are two constraints. 

One is that the method can be applied to a linear system only, 

and the last is that it requires exact model equation of system 

and time-delay [7-8]. 

An estimator was adopted to compensate the time-delay 

between sensor and controller. This method uses the 

time-domain solution of state equation to estimate the change 

of states during the delay time. It is a comparatively exact way 

to compensate the sensor-to-controller delay, but it cannot 

afford the input time-delay between controller and actuator 

[4]. 

In this article, stability region analysis of a system is 

presented according to the sampling period and time-delay at 

discretization. Then, the influence of time-delay in control 

systems is shown and input/output linearization is described, 

which is a controller design scheme for nonlinear systems. 

Then, some prediction models are proposed to compensate the 

input time-delay in the discrete-time nonlinear control system. 

Finally, some simulations are performed to evaluate the 

proposed method. 

2. TIME-DELAY EFFECT 

2.1 Stability region 

Generally, fast sampling is required to approximate the 

system more accurately, but fast sampling in distributed 

control system increases the load of network and causes the 

time-delay. Therefore, sampling rate is important for the 

robustness against the time-delay and the desired control 

performance.

By plotting the stability region about sampling period h

and time-delay , the relation between stability and the two 

parameters can be proved. Consider a linear system described 

by a continuous time state-space model [9]:  
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where (less than sampling period h ) denotes the 

time-delay. The discrete time state-space model of Eq. (1) is 

bellow:
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Defining ( ) ( ), ( 1)
T

T Tw kh x kh u k h  as the augmented 

state vector, the augmented closed-loop system is 

0 1

(( 1) ) ( ) ( ),

( ) .
0

w k h k w kh

K
k

K

                        (4)

The eigenvalues of the above matrix can define the stability 

region of the system. 

Example 1. Consider the integrator system [4]: 

( ) ( ),

( ) ( ).

x t u t

u t Kx t
                           (5)

The characteristic equation of the discrete time closed-loop 

system can be represented as bellow: 

2 (1 ( )) 0z K h z K .                     (6)

Fig. 1 is the stability region of the system Eq. (5), and step 

responses for some particular points (Table 1) on the stability 

region are shown in Fig. 2.  

   Fig. 1 Stability region of the integrator system. 

The stability region presents the relation between sampling 

period and time-delay in stability aspect. 

Table 1. Particular points on the stability region. 

 Time-delay[sec] / h  Stability 

1h

0.0

0.5

1.0

0.0

1.5

2.1

Stable 

Stable 

Marginal stable 

2h

0.4

0.8

1.0

0.2

0.4

0.5

Stable 

Stable 

Marginal Stable

3h

0.3

0.9

1.2

0.1

0.3

0.4

Unstable 

Stable 

Unstable 

Fig.2 Step responses according to h  and .

2.2 Time-delay effect of a linear control system 

If there exists time-delay in the closed-loop system ( )G z ,

the aggregated transfer function becomes Eq. 7: 

( )
( )

1 ( )

N

d N

z G z
G z

z G z
                           (7)

N is the time-delay of sampling period size. As the 

time-delay increases, the order of increase, and poles move 

toward the outside of unit circle on the z-plane. Therefore, 

output has much more oscillation and becomes unstable. 

Example 2. Consider a simplified model [10]: 

2

1 1
( )

2 ( 1)
G z

z
.                              (8)

Let us suppose that position controller of Eq. (8) was designed 

as bellow: 

0.8201
( ) 0.389

0.135

z
D z

z
.                        (9)

As the time-delay increases, the order of aggregated transfer 

function including time-delay increases and location of system 

poles change according to the time-delay. 

2

1 0.389( 0.8201)
( )

2 ( 1) ( 0.135) 0.389( 0.8201)
d N

z
G z

z z z z
(10)

Fig. 3 Pole movement according to the time-delay 
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It is shown in Fig. 3, and Fig. 4 shows the step responses of 

each delay condition. 

Fig. 4 Output properties according to the time-delay 

3. CONTROLLER SYNTHESIS 

3.1 Continuous-time input/output linearization 

Input/output lineariztion is a controller synthesis scheme for 

a nonlinear system. It uses exact state transformation and 

feedback to linearize the system algerbrically and then applies 

linear control scheme.  

Consider a nonlinear system described in general form: 

, ,

.

x x u

y h x
(11)

If a system is controllable, then it has finite relative order 

between output y  and input u . The relative order r  can 

be calculated by differential operations as bellow: 

( 1)
2 1( , ) ( ) ( )

r
r

r

d
y h x u f x u f x

dt
.            (12)

The direct relation of output and input is revealed in Eq. (12). 

If the control input is set up like Eq. (13), the nonlinearity of 

the system will be eliminated from the nonlinear system and a 

simple linear dynamics of Eq. (14) will hold: 

1

2

1
( )u f

f
(13)

( )ry .                                  (14)

The tracking problem of the system can be solved by using 

linear control scheme. Eq. (15) is tracking error. In Eq. (16), if 

the coefficients k  of error dynamics are set up to make the 

error converge to 0 , then the internal input can be 

calculated as Eq. (17). 

de y y .                                   (15) 

( ) ( 1) ( 2)
1 1 0r r r

r re k e k e k e .             (16)

( 1) ( 2)
1 1

r r
d r ry k e k e k e .              (17)

3.2 Discrete-time input/output linearization 

Controller synthesis for a discrete-time nonlinear system by 

using Input/output linearization is same with the case of 

continuous-time system. The relative order of Eq. (18) can be 

induced by shift operations and the control input of Eq. (20) 

eliminates the nonlinearity in the Eq. (19).  

( 1) ( ), ( )

( ) ( )

x k x k u k

y k h x k
(18)

1 2( ) ( ( )) ( ( )) ( )y k r f x k f x k u k (19)

1

2

1
( ) ( ) ( ( ))

( ))
u k k f x k

f x k
(20)

The system can be derived as a linear system of Eq. (21). The 

track problem of this system can be solved by discrete-time 

linear control method described in the previous section.  

( ) ( )y k r k .                              (21)

4. COMPENSATION FOR THE INPUT 

TIME-DELAY 

If there exists input time-delay in the discrete-time 

nonlinear control system synthesized by using input/output 

linearization, the control input to the plant at time k  is 

bellow:

1

2

1
( ) ( ) ( ( ))

( ( ))
u k N k N f x k N

f x k N
.  (22)

In order to compensate the input time-delay, the controller 

should provide future input value to the plant at current time 

k :

1

2

( ) ( | )ˆ

1 ˆ( ) ( ( )) .ˆ
ˆ ( ( ))

w k u k N k

k N f x k N
f x k N

(23)

Therefore, predictors about the internal input  and the 

combined state function f  are adopted to calculate future 

control input ( )w k . The proposed prediction models use the 

time-series data and the predicted values are available for the 

controller to calculate the control input that will be used for 

the system. The states of the system for the next prediction are 

renewed continuously by the control input.  

Each predictor has the following forms: 

FIR: 
0

ˆ ( 1) ( )
M

n

n

f k b f k n ,                   (24-a)

ARX:
0 0

ˆ ( 1) ( ) ( )
NM

n n

n n

f k a f k n b w k n , (24-b)

ARMAX:
0 0

0

ˆ ( 1) ( ) ( )

( ) .

NM

n n

n n

O

n pre

n

f k a f k n b w k n

c e k n

(24-c)
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Even though the control input had time-delay, the plant can be 

handled by approximated current input of Eq. (25). It can 

compensate the influence of the input time-delay. 

( ) ( )ˆw k N u k (25)

The structure of this proposed method is shown in Fig. 5. 

Fig. 5 Block diagram for the input time-delay compensation. 

5. SIMULATIONS 

In this paper, some simulations for the Van der Pol 

system that has input time-delay are performed. The Van 

der Pol equation is a representative nonlinear system. It 

can be interpreted as a 2nd order mass-spring-damper 

system that has position-dependency damping 

coefficient or a RLC electronic circuit that has nonlinear 

resistance.

If it has any initial value except equilibrium point, 

then this system sustains oscillation. There exists a 

closed curve in the portraits. This closed curve 

corresponds to a limit cycle. Fig. 6 shows the phase 

portraits of the Van der Pol system used in simulations. 

Fig. 6 Phase portraits of the Van der Pol system 

The dynamic equation of the system is Eq. (26): 

2(1 )x x x x u ,                          (26)

and the state space representation of that is Eq. (27):  

1 2

2
2 2 1 1

,

(1 ) .

x x

x x x x u
(27)

Euler’s method is used for discretization of the system as 

bellow:

1 1 2

2 2

2
2 1 1 2

( 1) ( ) ( ) ,

( 1) ( )

( ) 1 ( ) ( ) ( )

( ) ,

x k x k x k T

x k x k

x k x k x k x k T

u k T

(28)

1( ) ( )y k x k .                             (29)

In the case that the sampling period is 0.05T  [sec], the 

initial state is (0, 0) 0.1 0
T

x , and the input is ( ) 0u k ,

the behavior of system output is like Fig 7.  

Fig. 7 Zero-input response of the system 

The relative order of the system is 2r . The controller 

synthesized by using input/output linearization is bellow: 

2

1
( ) ( ) ( )u k k f k

T
,                       (30)

in this notation, the internal input  and function of states 

are Eq. (30-a) and Eq. (30-b). 

2 1 2

1 1

( )

( ) ( )

( )

d

d

d

v k y

k y x k x k T

k y x k

(30-a)

1 2

2
2 2 1 1

( ) ( ) ( )

( ) ( ) 1 ( ) ( )

f k x k x k T

x k x k x k x k T T
(30-b)

dy  is the desired output, T  is the sampling period. 1k  and 

2k  are the coefficients of the error dynamics in Eq. (31). 

2 1( 2) ( 1) ( ) 0e k k e k k e k (31)

In Eq. (31), the coefficients are set as 1 2, 0.53, 1.4k k

to the roots be located at 0.7 0.2j  in the z-plane. 
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Fig. 8 System output by the controller without delay. 

The output property follows the error dynamics of Eq. (31). 

The output of the system controlled by Eq. (30) is shown in 

Fig. 8.  

If there exists input time-delay of 1N , the output has the 

typical effect of time-delay like as Fig. 9. It shows that 

increased percent overshoot and the settling time. 

Fig. 9 Output of the system with input time-delay 1N .

It is verified that the influence of input time-delay can be 

compensated by the proposed method in Fig. 10. The percent 

overshoot and settling time are decreased effectively.  

Fig. 10 Compensation for the input time-delay 1N .

In the case that the input time-delay is 2N in the 

control system, it becomes unstable and the output diverges. 

That is shown in Fig. 11. 

Fig. 11 Output of the system with input time-delay 2N .

The proposed method makes the control system stable and 

satisfies the tracking performance. In the case that the 

time-delay is longer than sampling period, it shows the 

effective compensation property for the input time-delay as 

shown in Fig. 12.  

Fig. 12 Compensation for the input time-delay 2N .

6. CONCLUSION 

 In this paper, the stability region is analyzed about 

sampling period and time-delay in discretization of a 

control system. A controller of discrete-time nonlinear 

system is designed by using input/output linearization. It 

is shown that the performance of the controller is 

deteriorated and the system becomes unstable under the 

circumstance of input time-delay existence.  

A new approach is proposed for the input time-delay 

compensation. It is based on the predictor. It can obtain 

the future value of states combination and internal input 

that will be needed to calculate the control input. It is 

adopted to a nonlinear control system that is synthesized 

without considering the input time-delay.  

Through the simulations, it is validated that the 

proposed method can compensate for the input 

time-delay effectively. Another analysis of the system 

for the time-delay or a controller change is not required 

in the proposed method. 
 There are needs to develop an exact and simple 

discretization method, study on variable time-delay and 
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improve property of the prediction model for longer 

time-delay. 
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