• 제목/요약/키워드: Time-Delay Compensation

Search Result 244, Processing Time 0.025 seconds

On-Line Feed-Forward Dead-Time Compensation Method (온라인 전향 데드타임 보상기법)

  • 김현수;윤명중
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.267-274
    • /
    • 2004
  • In this paper, a new on-line dead-time compensation method is proposed. The output voltage errors due to the dead-time effect is considered as disturbance voltages. The magnitude of the disturbance voltages is estimated using a time delay control technique and the disturbance voltages are calculated using the estimated values, measured currents, and position information. The calculated disturbance voltages are fed to voltage references in order to compensate the dead-time effect. The proposed method is applied to a PM synchronous motor drive system and implemented in a digital manner using a digital signal processor (DSP) TMS320C31. The experiments are carried out for this system to show the effectiveness of the proposed method and the results show the validity of the proposed method.

Measurement of Time Delay in Optical Fiber Line Using Rayleigh Scattering (Rayleigh 산란을 이용한 광선로의 time delay 측정)

  • Kwon, Hyung-Woo;Yu, Il;Yu, Yun-Sik
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.5B
    • /
    • pp.365-369
    • /
    • 2012
  • It is very important to control synchronization by inter-network delay compensation in high speed synchronous optcial transmission network systems. In this study we designed a delay measurement system based on OTDR using Rayleigh backscatterer in order to compensate for time delay due to the length of optical fiber line. We observed waveform variations on both averaging time and peak power of laser pulse. Finally, we executed experimental demonstration on its accuracy and test repeatability by comparison to the methods practically used in the industry. Experimental results show maximum error of 0.06usec and standard deviation of 0.021usec, which means it's possibly applied to delay control system for mobile repeaters and stations.

Analysis of Row and Column Lines in TFT-LCD panels with a Distributed Electrical Model

  • Park, Hyun-Woo;Kim, Soo-Hwan;Kim, Gyoung-Bum;Hwang, Sung-Woo;Kim, Su-Ki;McCartney, Richard I.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07b
    • /
    • pp.882-886
    • /
    • 2005
  • As the TFT-LCD panels become larger and provide higher resolution, the distributed capacitive and resistive lines induce the propagation delay, reduce the TFT-on time and deteriorate the pixel chargingratio. A number of the compensation methods, like the H-LDC (Horizontal Line Delay Compensation), have been proposed to compensate the propagation delay of the large and high resolution panels [1]. These methods, however, require the comparatively accurate gate propagation delay estimates at each column driver. In this paper, by observing the actual gate and data waveform from 15-inch XGA TFT-LCD panels, we could predict the propagation delay along the row and column line.

  • PDF

A Transfer Alignment Method considering a Data Latency Compensation for an Inertial Navigation System in High Dynamic Applications (고기동 환경에서 관성항법장치의 시간지연 보상 전달정렬 기법)

  • Lee, Hyung-Sub;Han, Kyung-Jun;Lee, Sang-Woo;Yu, Myung-Jong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.12
    • /
    • pp.1742-1747
    • /
    • 2015
  • An improved transfer alignment method for a strap-down inertial navigation system (SDINS) is presented here. The alignment accuracy in conventional method is vulnerable to the data latency of a Master INS (MINS) in high maneuverable platforms. We propose a time delay compensation equation considering higher-order terms in the attitude measurement equation of the Kalman filter. The equation incorporates additional information including angular rate, angular acceleration and linear acceleration from the MINS. Simulation results show that the transfer alignment accuracy is significantly improved in the high dynamic environment by incorporating the latency compensation technique.

Design of A Digital Controller with Time Delay for Dynamic Voltage Restorers (동적전압보상기를 위한 시간지연을 고려한 디지털 제어기 설계)

  • Kim Hyosung;Lee Sang-Joon;Sul Seung-Ki
    • Proceedings of the KIPE Conference
    • /
    • 2003.11a
    • /
    • pp.36-40
    • /
    • 2003
  • On analyzing the power circuit of a DVR system, control limitations and control targets are presented for the voltage compensation in DVRs. The control delay in digital controllers increases the dimension of the system transfer function one degree higher which makes the control system more complicate and more unstable. Based on the power stage analysis, a novel controller for the compensation voltages in DVRs is proposed by a feedforward control scheme. Proposed controller works well with the time delay in the digital control system. This paper also proposes a guide line to design the control gain, appropriate output filter parameters and inverter switching frequency for DVRs in digital controllers. Proposed theory is verified by an experimental DVR system with a typical digital controller.

  • PDF

Controller Synthesis of A Nonlinear System Using Input/Output Linearization and Compensation for Input Time-Delay (비선형 시스템의 입/출력 선형화 제어기 설계와 입력 시간-지연 보상)

  • Cho, Yong-Ho;Chong, Kil-To
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.768-773
    • /
    • 2004
  • This work deals with the synthesis of discrete-time nonlinear controller for input time-delay existing nonlinear system and proposes a new effective method to compensate the influence of input time-delay. The controller is synthesised by using input/output linearization. Under the circumstance that input time-delay exist, controller have to produce future value that will be needed for system. On account of this reason described, a weighted average predictor of combined states is adopted. Using the discretization via Euler method, numerical simulations about Van der Pol system are performed to evaluate performance of the proposed method.

  • PDF

Study on Multi-Mode Monopulse Signal Processing System Providing Optimal Time Delay under High Doppler Condition (고속 도플러 편이 환경에서 최적 시간지연을 갖는 다중모드 모노펄스 신호처리에 관한 연구)

  • Lee, Jaemoon;Lim, Jaesung;Ahn, Huisoo
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.582-589
    • /
    • 2016
  • Multi-mode monopulse system is widely used for satellite terminal like UAV because of high tracking accuracy and low size/weight profile. In order to calculate tracking error, Multi-mode monopulse system utilizes high-order mode signal, and it should have enough C/N(carrier to noise) level therefore tracking system needs narrow band filtering of received satellite beacon signal as much as possible. However, UAV suffers for beacon frequency drift derived from Doppler effect due to satellite figure 8 movement and UAV maneuvering. Therefore wideband signal processing needs to be considered in advance for exact doppler compensation and consequent time delay. In this paper, we propose the multi-stage Digital Signal processing system for beacon signal, which could minimize the signal delay under high Doppler and low C/N condition.

Robust H∞ Fuzzy Control for Discrete-Time Nonlinear Systems with Time-Delay (시간 지연을 갖는 이산 시간 비선형 시스템에 대한 H∞ 퍼지 강인 제어기 설계)

  • Kim Taek Ryong;Park Jin Bae;Joo Young Hoon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.3
    • /
    • pp.324-329
    • /
    • 2005
  • In this paper, a robust $H\infty$ stabilization problem to a uncertain discrete-time nonlinear systems with time-delay via fuzzy static output feedback is investigated. The Takagj-Sugeno (T-S) fuzzy model is employed to represent an uncertain nonlinear system with time-delayed state. Then, the parallel distributed compensation technique is used for designing of the robust fuzzy controller. Using a single Lyapunov function, the globally asymptotic stability and disturbance attenuation of the closed-loop fuzzy control system are discussed. Sufficient conditions for the existence of robust $H\infty$ controllers are given in terms of linear matrix inequalities via similarity transform and congruence transform technique. We have shown the effectiveness and feasibility of the proposed method through the simulation.

An effective online delay estimation method based on a simplified physical system model for real-time hybrid simulation

  • Wang, Zhen;Wu, Bin;Bursi, Oreste S.;Xu, Guoshan;Ding, Yong
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1247-1267
    • /
    • 2014
  • Real-Time Hybrid Simulation (RTHS) is a novel approach conceived to evaluate dynamic responses of structures with parts of a structure physically tested and the remainder parts numerically modelled. In RTHS, delay estimation is often a precondition of compensation; nonetheless, system delay may vary during testing. Consequently, it is sometimes necessary to measure delay online. Along these lines, this paper proposes an online delay estimation method using least-squares algorithm based on a simplified physical system model, i.e., a pure delay multiplied by a gain reflecting amplitude errors of physical system control. Advantages and disadvantages of different delay estimation methods based on this simplified model are firstly discussed. Subsequently, it introduces the least-squares algorithm in order to render the estimator based on Taylor series more practical yet effective. As a result, relevant parameter choice results to be quite easy. Finally in order to verify performance of the proposed method, numerical simulations and RTHS with a buckling-restrained brace specimen are carried out. Relevant results show that the proposed technique is endowed with good convergence speed and accuracy, even when measurement noises and amplitude errors of actuator control are present.

Application of Smart Transmitter Technology in Nuclear Engineering Measurements (지능형 송출기 기법의 원자력 계측에의 응용)

  • Kang, Hyun-Gook;Seong, Poong-Hyun
    • Nuclear Engineering and Technology
    • /
    • v.25 no.3
    • /
    • pp.403-412
    • /
    • 1993
  • By making use of the microprocessor technology, instrumentation system becomes intelligent. In this study a programmable smart transmitter is designed and applied to the nuclear engineering measurements. In order to apply the smart transmitter technology to nuclear engineering measurements, the digital time delay compensation function and water level change detection function are developed and applied in this work. The time compensation function compensates effectively the time delay of the measured signal, but it is found that the characteristics of the compensation function should be considered through its application. It is also found that the water level change detection function reduces the detection time to about 7 seconds by the signal processing which has the time constant of over 250 seconds and which has the heavy noise.

  • PDF