• Title/Summary/Keyword: Time graph

Search Result 949, Processing Time 0.024 seconds

A Causality Analysis of Lottery Gambling and Unemployment in Thailand

  • KHANTHAVIT, Anya
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.149-156
    • /
    • 2021
  • Gambling negatively affects the economy, and it brings unwanted financial, social, and health outcomes to gamblers. On the one hand, unemployment is argued to be a leading cause of gambling. On the other hand, gambling can cause unemployment in the second-order via gambling-induced poor health, falling productivity, and crime. In terms of significant effects, previous studies were able to establish an association, but not causality. The current study examines the time-sequence and contemporaneous causalities between lottery gambling and unemployment in Thailand. The Granger causality and directed acyclic graph (DAG) tests employ time-series data on gambling- and unemployment-related Google Trends indexes from January 2004 to April 2021 (208 monthly observations). These tests are based on the estimates from a vector autoregressive (VAR) model. Granger causality is a way to investigate causality between two variables in a time series. However, this approach cannot detect the contemporaneous causality among variables that occurred within the same period. The contemporaneous causal structure of gambling and unemployment was identified via the data-determined DAG approach. The use of time-series Google Trends indexes in gambling studies is new. Based on this data set, unemployment is found to contemporaneously cause gambling, whereas gambling Granger causes unemployment. The causalities are circular and last for four months.

A Study on Real-time State Estimation for Smart Microgrids (스마트 마이크로그리드 실시간 상태 추정에 관한 연구)

  • Bae, Jun-Hyung;Lee, Sang-Woo;Park, Tae-Joon;Lee, Dong-Ha;Kang, Jin-Kyu
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.419-424
    • /
    • 2012
  • This paper discusses the state-of-the-art techniques in real-time state estimation for the Smart Microgrids. The most popular method used in traditional power system state estimation is a Weighted Least Square(WLS) algorithm which is based on Maximum Likelihood(ML) estimation under the assumption of static system state being a set of deterministic variables. In this paper, we present a survey of dynamic state estimation techniques for Smart Microgrids based on Belief Propagation (BP) when the system state is a set of stochastic variables. The measurements are often too sparse to fulfill the system observability in the distribution network of microgrids. The BP algorithm calculates posterior distributions of the state variables for real-time sparse measurements. Smart Microgrids are modeled as a factor graph suitable for characterizing the linear correlations among the state variables. The state estimator performs the BP algorithm on the factor graph based the stochastic model. The factor graph model can integrate new models for solar and wind correlation. It provides the Smart Microgrids with a way of integrating the distributed renewable energy generation. Our study on Smart Microgrid state estimation can be extended to the estimation of unbalanced three phase distribution systems as well as the optimal placement of smart meters.

  • PDF

Merge Algorithm of Maximum weighted Independent Vertex Pair at Maximal Weighted Independent Set Problem (최대 가중치 독립집합 문제의 최대 가중치 독립정점 쌍 병합 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.171-176
    • /
    • 2020
  • This paper proposes polynomial-time algorithm for maximum weighted independent set(MWIS) problem that is well known as NP-hard. The known algorithms for MWIS problem are polynomial-time to specialized in particular graph type, distributed, or clustering method. But there is no unified algorithm is suitable to all kinds of graph types. Therefore, this paper suggests unique polynomial-time algorithm that is suitable to all kinds of graph types. The proposed algorithm merges the maximum weighted vertex vi and maximum weighted vertex vj that is not adjacent to vi. As a result of apply to undirected graphs and trees, this algorithm can be get the optimal solution. This algorithm improves previously known solution to new optimal solution.

Enterprise Network Weather Map System using SNMP (SNMP를 이용한 엔터프라이즈 Network Weather Map 시스템)

  • Kim, Myung-Sup;Kim, Sung-Yun;Park, Jun-Sang;Choi, Kyung-Jun
    • The KIPS Transactions:PartC
    • /
    • v.15C no.2
    • /
    • pp.93-102
    • /
    • 2008
  • The network weather map and bandwidth time-series graph are popularly used to understand the current and past traffic condition of NSP, ISP, and enterprise networks. These systems collect traffic performance data from a SNMP agent running on the network devices such as routers and switches, store the gathered information into a DB, and display the network performance status in the form of a time-series graph or a network weather map using Web user interface. Most of current enterprise networks are constructed in the form of a hierarchical tree-like structure with multi-Gbps Ethernet links, which is quietly different from the national or world-wide backbone network structure. This paper focuses on the network weather map for current enterprise network. We start with the considering points in developing a network weather map system suitable for enterprise network. Based on these considerings, this paper proposes the best way of using SNMP in constructing a network weather map system. To prove our idea, we designed and developed a network weather map system for our campus network, which is also described in detail.

Measuring Method of Worst-case Execution Time by Analyzing Relation between Source Code and Executable Code (소스코드와 실행코드의 상관관계 분석을 통한 최악실행시간 측정 방법)

  • Seo, Yongjin;Kim, Hyeon Soo
    • Journal of Internet Computing and Services
    • /
    • v.17 no.4
    • /
    • pp.51-60
    • /
    • 2016
  • Embedded software has requirements such as real-time and environment independency. The real-time requirement is affected from worst-case execution time of loaded tasks. Therefore, to guarantee real-time requirement, we need to determine a program's worst-case execution time using static analysis approach. However, the existing methods for worst-case execution time analysis do not consider the environment independency. Thus, in this paper, in order to provide environment independency, we propose a method for measuring task's execution time from the source codes. The proposed method measures the execution time through the control flow graph created from the source codes instead of the executable codes. However, the control flow graph created from the source code does not have information about execution time. Therefore, in order to provide this information, the proposed method identifies the relationships between statements in the source code and instructions in the executable code. By parameterizing those parts that are dependent on processors based on the relationships, it is possible to enhance the flexibility of the tool that measures the worst-case execution time.

At the time of inspection CT cerebral blood flow in patients with acute ischemic stroke, a comparative study of Bolus Tracking Technique and Fixed Time Technique (급성기 허혈성 뇌졸중 환자의 뇌 관류 CT검사 시 고정시간기법과 조영제 추적기법의 비교 연구)

  • Kim, Ki-Jeong;Jeong, Hong-Ryang
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2013.05a
    • /
    • pp.217-218
    • /
    • 2013
  • 급성기 허혈성 뇌졸중 증상이 있는 뇌 관류 CT검사를 시행한 환자를 대상으로 장비사가 제시한 고정 시간 기법(fixed time technique)과 조영제 추적 기법(bolus tracking technique)을 비교하여 환자의 피폭선량을 분석하고자 하였으며 조영제 추적 기법의 유용성과 최적의 조영증강 구간을 구현하는 Time graph를 알아보기 위한 것이다.

  • PDF

Scalable RDFS Reasoning Using the Graph Structure of In-Memory based Parallel Computing (인메모리 기반 병렬 컴퓨팅 그래프 구조를 이용한 대용량 RDFS 추론)

  • Jeon, MyungJoong;So, ChiSeoung;Jagvaral, Batselem;Kim, KangPil;Kim, Jin;Hong, JinYoung;Park, YoungTack
    • Journal of KIISE
    • /
    • v.42 no.8
    • /
    • pp.998-1009
    • /
    • 2015
  • In recent years, there has been a growing interest in RDFS Inference to build a rich knowledge base. However, it is difficult to improve the inference performance with large data by using a single machine. Therefore, researchers are investigating the development of a RDFS inference engine for a distributed computing environment. However, the existing inference engines cannot process data in real-time, are difficult to implement, and are vulnerable to repetitive tasks. In order to overcome these problems, we propose a method to construct an in-memory distributed inference engine that uses a parallel graph structure. In general, the ontology based on a triple structure possesses a graph structure. Thus, it is intuitive to design a graph structure-based inference engine. Moreover, the RDFS inference rule can be implemented by utilizing the operator of the graph structure, and we can thus design the inference engine according to the graph structure, and not the structure of the data table. In this study, we evaluate the proposed inference engine by using the LUBM1000 and LUBM3000 data to test the speed of the inference. The results of our experiment indicate that the proposed in-memory distributed inference engine achieved a performance of about 10 times faster than an in-storage inference engine.

Matrix-Based Intelligent Inference Algorithm Based On the Extended AND-OR Graph

  • Lee, Kun-Chang;Cho, Hyung-Rae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.10a
    • /
    • pp.121-130
    • /
    • 1999
  • The objective of this paper is to apply Extended AND-OR Graph (EAOG)-related techniques to extract knowledge from a specific problem-domain and perform analysis in complicated decision making area. Expert systems use expertise about a specific domain as their primary source of solving problems belonging to that domain. However, such expertise is complicated as well as uncertain, because most knowledge is expressed in causal relationships between concepts or variables. Therefore, if expert systems can be used effectively to provide more intelligent support for decision making in complicated specific problems, it should be equipped with real-time inference mechanism. We develop two kinds of EAOG-driven inference mechanisms(1) EAOG-based forward chaining and (2) EAOG-based backward chaining. and The EAOG method processes the following three characteristics. 1. Real-time inference : The EAOG inference mechanism is suitable for the real-time inference because its computational mechanism is based on matrix computation. 2. Matrix operation : All the subjective knowledge is delineated in a matrix form, so that inference process can proceed based on the matrix operation which is computationally efficient. 3. Bi-directional inference : Traditional inference method of expert systems is based on either forward chaining or backward chaining which is mutually exclusive in terms of logical process and computational efficiency. However, the proposed EAOG inference mechanism is generically bi-directional without loss of both speed and efficiency.

  • PDF

Three Color Algorithm for Two-Layer Printed Circuit Boards Layout with Minimum Via

  • Lee, Sang-Un
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.3
    • /
    • pp.1-8
    • /
    • 2016
  • The printed circuit board (PCB) can be used only 2 layers of front and back. Therefore, the wiring line segments are located in 2 layers without crossing each other. In this case, the line segment can be appear in both layers and this line segment is to resolve the crossing problem go through the via. The via minimization problem (VMP) has minimum number of via in layout design problem. The VMP is classified by NP-complete because of the polynomial time algorithm to solve the optimal solution has been unknown yet. This paper suggests polynomial time algorithm that can be solve the optimal solution of VMP. This algorithm transforms n-line segments into vertices, and p-crossing into edges of a graph. Then this graph is partitioned into 3-coloring sets of each vertex in each set independent each other. For 3-coloring sets $C_i$, (i=1,2,3), the $C_1$ is assigned to front F, $C_2$ is back B, and $C_3$ is B-F and connected with via. For the various experimental data, though this algorithm can be require O(np) polynomial time, we obtain the optimal solution for all of data.

As-Rigid-As-Possible Dynamic Deformation with Oriented Particles (방향성 입자를 이용한 ARAP 동적 변형)

  • Choi, Min Gyu
    • Journal of Korea Game Society
    • /
    • v.17 no.1
    • /
    • pp.89-98
    • /
    • 2017
  • This paper presents a novel ARAP (as-rigid-as-possible) approach to real-time simulation of physics-based deformation. To cope with one, two and three dimensional deformable bodies in an efficient, robust and uniform manner, we introduce a deformation graph of oriented particles and formulate the corresponding ARAP deformation energy. For stable time integration of the oriented particles, we develop an implicit integration scheme formulated in a variational form. Our method seeks the optimal positions and rotations of the oriented particles by iteratively applying an alternating local/global optimization scheme. The proposed method is easy to implement and computationally efficient to simulate complex deformable models in real time.