• Title/Summary/Keyword: Time Series analysis(ARIMA

Search Result 144, Processing Time 0.027 seconds

Prediction of the shelf-life of ammunition by time series analysis (시계열분석을 적용한 저장탄약수명 예측 기법 연구 - 추진장약의 안정제함량 변화를 중심으로 -)

  • Lee, Jung-Woo;Kim, Hee-Bo;Kim, Young-In;Hong, Yoon-Gee
    • Journal of the military operations research society of Korea
    • /
    • v.37 no.1
    • /
    • pp.39-48
    • /
    • 2011
  • To predict the shelf-life of ammunition stockpiled in intermediate have practical meaning as a core value of combat support. This research is to Predict the shelf-life of ammunition by applying time series analysis based on report from ASRP of the 155mm, KD541 performed for 6 years. This study applied time series analysis using 'Mini-tab program' to measure the amount of stabilizer as time passes by is different from the other one that uses regression analysis. The average shelf-life of KD541 drawn by time series analysis was 43 years and the lowest shelf-life assessed on the 95% confidence level was 35 years.

A study on electricity demand forecasting based on time series clustering in smart grid (스마트 그리드에서의 시계열 군집분석을 통한 전력수요 예측 연구)

  • Sohn, Hueng-Goo;Jung, Sang-Wook;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.193-203
    • /
    • 2016
  • This paper forecasts electricity demand as a critical element of a demand management system in Smart Grid environment. We present a prediction method of using a combination of predictive values by time series clustering. Periodogram-based normalized clustering, predictive analysis clustering and dynamic time warping (DTW) clustering are proposed for time series clustering methods. Double Seasonal Holt-Winters (DSHW), Trigonometric, Box-Cox transform, ARMA errors, Trend and Seasonal components (TBATS), Fractional ARIMA (FARIMA) are used for demand forecasting based on clustering. Results show that the time series clustering method provides a better performances than the method using total amount of electricity demand in terms of the Mean Absolute Percentage Error (MAPE).

Time Series Analysis and Development of Forecasting Model in Apartment House Cost Using X-12 ARIMA (X-12 ARIMA를 이용한 아파트 원가의 변동분석 및 예측모델 개발)

  • Cho, Hun-Hee
    • Korean Journal of Construction Engineering and Management
    • /
    • v.6 no.6 s.28
    • /
    • pp.98-106
    • /
    • 2005
  • The construction cost index and the forecasting model of apartment house can be efficient for evaluating the validness of the fluctuating price, and for making guidelines for construction firms when calculating their profit. In this study the previous construction cost index of apartment house was improved, and the forecasting model based on X-12 ARIMA was developed. According to the result, during the last five years the construction cost, excluding labor expense, has risen approximately to 22.7%. And during next three years, additional 16.8% rise of construction cost is expected. Those quantitative results can be utilized for evaluating the apartment house's selling price in an indirection, and be helpful to understand the variation pattern of the price.

Integrating Granger Causality and Vector Auto-Regression for Traffic Prediction of Large-Scale WLANs

  • Lu, Zheng;Zhou, Chen;Wu, Jing;Jiang, Hao;Cui, Songyue
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.1
    • /
    • pp.136-151
    • /
    • 2016
  • Flexible large-scale WLANs are now widely deployed in crowded and highly mobile places such as campus, airport, shopping mall and company etc. But network management is hard for large-scale WLANs due to highly uneven interference and throughput among links. So the traffic is difficult to predict accurately. In the paper, through analysis of traffic in two real large-scale WLANs, Granger Causality is found in both scenarios. In combination with information entropy, it shows that the traffic prediction of target AP considering Granger Causality can be more predictable than that utilizing target AP alone, or that of considering irrelevant APs. So We develops new method -Granger Causality and Vector Auto-Regression (GCVAR), which takes APs series sharing Granger Causality based on Vector Auto-regression (VAR) into account, to predict the traffic flow in two real scenarios, thus redundant and noise introduced by multivariate time series could be removed. Experiments show that GCVAR is much more effective compared to that of traditional univariate time series (e.g. ARIMA, WARIMA). In particular, GCVAR consumes two orders of magnitude less than that caused by ARIMA/WARIMA.

A study on parsimonious periodic autoregressive model (모수 절약 주기적 자기회귀 모형에 관한 연구)

  • Lee, Jiho;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.133-144
    • /
    • 2016
  • This paper proposes a parsimonious periodic autoregressive (PAR) model. The proposed model performance is evaluated through an analysis of Korean unemployment rate series that is compared with existing models. We exploit some common features among each seasonality and confirm it by LR test for the parsimonious PAR model in order to impose a parsimonious structure on the PAR model. We observe that the PAR model tends to be superior to existing seasonal time series models in mid- and long-term forecasts. The proposed parsimonious model significantly improves forecasting performance.

Forecasting of building construction cost variation using BCCI and it's application (건축공사비지수를 이용한 건설물가 변동분석 및 공사비 실적자료 활용방안 연구)

  • Cho Hun Hee;Kang Kyung In;Kim Chang Duk;Cho moon Young
    • Proceedings of the Korean Institute Of Construction Engineering and Management
    • /
    • autumn
    • /
    • pp.64-71
    • /
    • 2002
  • This research developed construction cost forecasting model using Building Construction Cost Index, time series analysis and Artificial Neural Networks. By this model, we could calculate the forecasted values of construction cost precisely and efficiently. And we also could find out that the standard deviation of forecasted values is 0.375 and it is a very exact result, so the standard deviation is just 0.33 percent of 112.28, the average of Building Construction Cost Index. And it show more exact forecasting result in comparison with Time Series Analysis.

  • PDF

Time series Analysis of State-space Model and Multiplication ARIMA Model in Dissolved Oxygen Simulation (용존산소 농도모의시 상태공간모형과 승법 ARIMA모형의 시계열 분석)

  • 이원호;서인석;한양수
    • Journal of environmental and Sanitary engineering
    • /
    • v.15 no.2
    • /
    • pp.65-74
    • /
    • 2000
  • The purpose of this study is to develop the stochastic stream water quality model for the intake station of Chung-Ju city waterworks in the Han river system. This model was based on the theory of Box-Jenkins Multiplicative ARIMA(SARIMA) and the state space model to simulate changes of water qualities. Variable of water qualities included in the model are temperature and dissolved oxygen(DO). The models development were based on the data obtained from Jan. 1990 to Dec. 1997 and followed the typical procedures of the Box-Jenkins method including identification and estimation. The seasonality of DO and temperature data to formulate for the SARIMA model are conspicuous and the period of revolution was twelve months. Both models had seasonality of twelve months and were formulates as SARIMA {TEX}$(2,1,1)(1,1,1)_{12}${/TEX} for DO and temperature. The models were validated by testing normality and independency of the residuals. The prediction ability of SARIMA model and state space model were tested using the data collected from Jan. 1998 to Oct. 1999. There were good agreements between the model predictions and the field measurements. The performance of the SARIMA model and state space model were examined through comparisons between the historical and generated monthly dissolved oxygen series. The result reveal that the state space model lead to the improved accuracy.

  • PDF

BIM Based Time-series Cost Model for Building Projects: Focusing on Construction Material Prices (BIM 기반의 설계단계 원가예측 시계열모델 -자재가격을 중심으로-)

  • Hwang, Sung-Joo;Park, Moon-Seo;Lee, Hyun-Soo;Kim, Hyun-Soo
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.2
    • /
    • pp.111-120
    • /
    • 2011
  • High-rise buildings have recently increased over the residential, commercial and office facilities, thus an understanding of construction cost for high-rise building projects has been a fundamental issue due to enormous construction cost as well as unpredictable market conditions and fluctuations in the rate of inflation by long-term construction periods of high-rise projects. Especially, recent violent fluctuations of construction material prices add to problems in construction cost forecasting. This research, therefore, develops a time-series model with the Box-Jenkins methodologies and material prices time-series data in Korea in order to forecast future trends of unit prices of required materials. BIM (Building Information Modeling) approaches are also used to analyze injection time of construction resources and to conduct quantity takeoff so that total material price can be forecasted. Comparative analysis of Predictability of tentative ARIMA (Autoregressive Integrated Moving Average) models was conducted to determine optimal time-series model for forecasting future price trends. Proposed BIM based time series forecasting model can help to deal with sudden changes in economic conditions by estimating future material prices.

Analysis and Prediction of Anchovy Fisheries in Korea ARIMA Model and Spectrum Analysis (한국 멸치어업의 어획량 분석과 예측 ARIMA 모델 및 스펙트럼 해석)

  • PARK Hae-Hoon;YOON Gab-Dong
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.29 no.2
    • /
    • pp.143-149
    • /
    • 1996
  • Forecasts of the monthly catches of anchovy in Korea were carried out by the seasonal Autoregressive Integrated Moving Average (ARIMA) model and spectral analysis. The seasonal ARIMA model is as follows: $$(1-0.431B)(1-B^{12})Z_t=(1-0.882B^{12})e_t$$ where: $Z_t=value$ at month $t;\;B^{p}$ is a backward shift operator, that is, $B^pZ_t=Z_{t-p};$ and $e_t=error$ term at month t, which is to forecast 24 months ahead the anchovy catches in Korea. The prediction error by the Box-Cox transformation on monthly anchovy catches in Korea was less than that by the logarithmic transformation. The equation of the Box-Cox transformation was $Y'=(Y^{0.58}-1)/0.58$. Forecasts of the monthly anchovy catches for $1991\~1992$, which were compared with the actual catches, had an absolute percentage error (APE) range of $1.0\~63.2\%$. Total observed annual catches in 1991 and 1992 were 170,293 M/T and 168,234 M/T respectively, while the predicted catches were 148,201 M/T and 148,834 M/T $(API\;13.0\%\;and\;11.5\%,\;respectively)$. The spectrum analysis of the monthly catches of anchovy showed some dominant fluctuations in the periods of 2.2, 6.1, 10.2 12.0 and 14.7 months. The spectrum analysis was also useful for selecting the ARIMA model.

  • PDF

Forecasting of Foreign Tourism demand in Kyeongju (경주지역 외국인 관광수요 예측)

  • Son, Eun Ho;Park, Duk Byeong
    • Journal of Agricultural Extension & Community Development
    • /
    • v.20 no.2
    • /
    • pp.511-533
    • /
    • 2013
  • The study used a seasonal ARIMA model to forecast the number of tourists to Kyeongju foreign in a uni-variable time series. Time series monthly data for the investigation were collected ranging from 1995 to 2010. A total of 192 observations were used for data analysis. The date showed that a big difference existed between on-season and off-season of the number of foreign tourists in Kyeongju. In the forecast multiplicative seasonal ARIMA(1,1,0) $(4,0,0)_{12}$ model was found the most appropriate model. Results show that the number of tourists was 694 thousands in 2011, 715 thousands in 2012, 725 thousands in 2013, 738 thousands in 2014, and 884 thousands in 2015. It was suggested that the grasping of the Kyeongju forecast model was very important in respect of how experts in tourism development, policy makers or planners would establish marketing strategies to allocate services in Kyeongju as a tourist destination and provide tourism facilities efficiently.