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Abstract 
 

Flexible large-scale WLANs are now widely deployed in crowded and highly mobile places 
such as campus, airport, shopping mall and company etc. But network management is hard for 
large-scale WLANs due to highly uneven interference and throughput among links. So the 
traffic is difficult to predict accurately. In the paper, through analysis of traffic in two real 
large-scale WLANs, Granger Causality is found in both scenarios. In combination with 
information entropy, it shows that the traffic prediction of target AP considering Granger 
Causality can be more predictable than that utilizing target AP alone, or that of considering 
irrelevant APs. So We develops new method - Granger Causality and Vector Auto-Regression 
(GCVAR), which takes APs series sharing Granger Causality based on Vector 
Auto-regression (VAR) into account, to predict the traffic flow in two real scenarios, thus 
redundant and noise introduced by multivariate time series could be removed. Experiments 
show that GCVAR is much more effective compared to that of traditional univariate time 
series (e.g. ARIMA, WARIMA). In particular, GCVAR consumes two orders of magnitude 
less than that caused by ARIMA/WARIMA. 
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1. Introduction 

With the popularization of the mobile internet and the intelligent terminal, the mobile data 
traffic experience explosive growth. Large-scale WLANs are flexible as terminal bypass for 
Internet traffic and widely deployed in crowded and highly mobile places such as campus, 
airport, shopping mall and company etc. Nowadays, the number of AP in a medium-sized city 
may reach 20000. Meanwhile, network congestion due to huge traffic flow, collapses under 
the attack of malicious traffic makes the management of large-scale WLAN urgent and 
different to traditional WLANs, especailly the traffic prediction. 

Traffic prediction is of great significance in network management [1], and it is usually 
performed through time series models [2]. Traditional univariate time series models, such as 
Auto-Regression (AR), Auto-Regressive Moving Average (ARMA), Auto-Regressive 
Integrated Moving Average (ARIMA) [3], only consider the historical data of the target serie 
alone. Recently, wavelet transform expands the methods for traffic forecasting [4-7]. But the 
research of traffic prediction for large-scale WLAN is not kept up with the engineering 
construction. In a large-scale WLAN containing many APs, the power and channel are usually 
adjusted for optimization [8], so not all stations can hear each other as traditional WLAN. In 
this situation, throughput distributions among links may be highly uneven and severe 
unfairness can result under the standard greedy algorithm in medium access in which all 
stations try to grab as much bandwidth as possible from the network. So the relationship of 
APs in large-scale WLANs should be carefully considered in traffic prediction. But above 
models ignore the information provided by un-targeted series which may improve the 
prediction. Multivariate time series models, such as Vector Auto-Regression (VAR), Support 
Vector Machine (SVM) utilize statistical dependence of multiple time series for traffic 
prediction. However, irrelevant series will introduce redundant and noise information for 
prediction. But the impact could be relaxed through information entropy which is 
demonstrated thereinafter. 

Granger Causality was first introduced by C. W. J. Granger [9], and it is widely used in 
statistics, economics, neural networks, etc. Paul et al. [10] brought the Granger Causality into 
the 3G mobile networks for the first time. However, Wireless Local Area Networks (WLANs) 
shows new features compared to cellular systems. On one hand, the coverage of a AP is much 
smaller than that of a base station (BS), and overlapping areas are quite common in WLANs. 
Thus the handoff in WLANs is much more frequent than that in cellular systems, and leading 
to traffic alteration in adjacent APs. On the other hand, in some scenarios, such as airport or 
shopping mall, the movement of users may be well and unconsciously organized due to their 
scheduling or habits. That may lead to the correlation between APs, which could benefit traffic 
prediction. 

In the paper, we utilize the correlation between APs to predict network traffic based on 
multivariate time series. We find that Granger Causality is universal in two typical scenarios, 
which accounts for at least 85% of total APs. In addition, based on information entropy, we 
shows that Granger Causality makes the traffic prediction of target AP more accurate, 
compared to considering historical traffic of target AP alone, or taking irrelevant APs into 
account. So we propose the method integrating Granger Causality and Vector 
Auto-Regression (GCVAR) for traffic prediction in the paper. Simulation results show that 
GCVAR is more accurate and precise compared to univariate time series models such as 
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ARIMA/WARIMA. Moreover, GCVAR is more efficient since it consumes two orders of 
magnitude less than that caused by ARIMA/WARIMA. 

The main contributions of this paper are: 
1) Based on the traffic data of two real large-scale WLANs, we verifies the widespread of 

Grange Causality in our scenarios (airport: 432 APs, mall: 182 APs). To the best of our 
knowledge, no other researchers have provided as convincing proof as we did to reveal 
the Grange Causality in WLANs in such large-scale real networks. 

2) Based on the Granger Causality in large-scale WLANs, this paper proposes traffic 
prediction method integrating Granger Causality and Vector Auto-Regression 
(GCVAR), to predict the traffic flow in large-scale WLANs. Extensive simulations 
show that GCVAR is more accurate and precise compared to ARIMA and WARIMA. 
In particular, GCVAR consumes two orders of magnitude less than that caused by 
ARIMA/WARIMA. 

The rest of this paper is organized as follows: Related work is provided in section 2, the 
verification of Granger Causality in Large-scale WLAN is introduced in section 3, the details 
of GCVAR is offered in section 4, experiments are presented in section 5. Finally, section 6 
concludes this paper. 

2. Related Work 
Generally, there are two kinds of models used in time series prediction, namely univariate 

and multivariate time series models. As for univariate time series models, Jiang et al. [2] made 
a comparison among AR, ARMA and other derived models in different time scale, while 
Taylor et al. [11] made similar comparison on the forecasting of intraday arrivals at a call 
center. Chen et al. [1] made some investigation on the seasonal property of WLAN traffic 
based on ARIMA model. Dominguez et al. [12] combined ARIMA models and wavelet 
tranform for time series forecasting. Tan et al. [13] proposed an aggregation method 
combining ARIMA model and neutral network model for weekly, daily and hourly traffic flow 
prediction. Nakayama et al. [14] improve ARIMA through a resolution adaptive method to 
increase accuracy. Cuaresma et al. [15] used linear univariate time-series models to predict 
electricity spot-prices hourly. Those derived algorithms of univariate time series enhanced 
prediction results, but the available information of other related time series is not considered to 
improve accuracy and precise. 

Different from univariate time series models, multivariate time series models take other 
related series into account to predict the target series. Medeiros et al.[16] proposed a hybrid 
linear-neural model, which can naturally incorporating the thresholds of linear multivariate. 
Holanda et al.[17] utilized principal components analysis and K-means in traffic prediction. 
Feng et al.[18]  applied support vector machine (SVM) to predict WLAN traffic. Liang et al. 
[19] utilized Ant Colony Optimization to obtain the parameter in SVR model for network 
traffic prediction. Ahmed et al.[20]  proposed sample entropy to evaluate structural complexity. 
Ghosh et al.[21] introduced structural time-series model to reduce computation complexity for 
short-term traffic forecasting. Kocak et al.[22] combined univariate and multivariate time 
series for nonlinear time series prediction. Although multivariate time series models above 
show good completeness, other related time series are considered indiscriminate for target 
time series prediction, which introduces irrelevant information and noise, as well as 
unnecessary overhead in computation. Therefore, in this paper Granger Causality is used to 
enhance the accuracy and computation simpleness for multivariate time serie mode.Granger 
Causality test is a statistical hypothesis test for determining whether one time series is useful 

https://en.wikipedia.org/wiki/Statistical_hypothesis_testing
https://en.wikipedia.org/wiki/Time_series
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in forecasting another. Compared with prediction based on entropy theory [23-26] in the latest 
researches, more direct correlation of different traffic series are considered in the prediction 
based on Granger causality. 

3. Granger Causality in Large-scale WLANs 

In this section, rigorous tests based on statistic analysis are provided to verify the existence 
of Granger Causality in our large-scale WLANs. 

3.1 Stationary of WLANs Traffic Series 
The stationary of traffic series is the premise for traffic modeling and Granger Causality 

Test. In particular, stationary is the key factor in selecting a proper order p  and estimating the 
parameters used in traffic model. Un-stationary series should be turned to stationary one 
through integer or fractional order differential for further processing. 

To examine the stationary of WLAN traffic series, we employ the ADF (Augmented 
Dickey-Fuller) test [27], which is widely used in statistics. The time series sample in ADF test 
is generated through an auto-regressive process ( )AR p . Based on the given sample, a test for a 
unit root is carried out. The series is un-stationary if the test is failed. The validation of ADF 
test of two larger-scale WLAN (an airport and a shopping mall) are shown in Table 1. 

 
Table 1. Validation of ADF test of two scenarios 

 Airport Shopping Mall 
ADF test statistic -3.773524 -11.09497 

1% level -3.449738 -2.571183 
5% level -2.869978 -1.941773 

10% level -2.571335 -1.616066 
 
As shown in Table 1, the results of ADF test statistic are less than the significant confidence 

threshold (1%), which means that the traffic series in our scenarios are stationary. 

3.2 Verification of Granger Causality in WLANs 
According to investigation, Granger Causality exists for some stationary time series. In this 

paper we applies Granger Causality test to estimate the causality relationship between 
different traffic series generated by different APs in WLANs. 

A time series X is regarded as the Granger-Cause of Y  if the history values of both X  and 
Y  provide statistically significant information compared to that of  Y  alone, namely the 
series X  is helpful in forecasting the future values in series Y . 
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Where ( )X t  and ( )Y t are the value at current time step. ( )X t i− and ( )Y t i− are the -th 

lagged values in original series, respectively. 11A , 12A , 21A and 22A  are regression coefficients. 

https://en.wikipedia.org/wiki/Forecasting
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1( )tε  and 2 ( )tε  are error terms. 
Granger Causality is usually determined through a F-test. Based on the hypothesis that X is 

not the Granger-Cause of Y , we execute the two regression process, respectively including 
and not including the lagged terms of X . The residual sum of squares of former one is URSS , 
and that of later is RRSS , then F-test is defined as:  

 
( ) ( 2 1) /R U UF RSS RSS N n RSS n= − × − − ×                            (2) 

 
Where n  is the number of lagged terms, N  is the total sample number. The hypothesis is 

rejected if the value of F is less than threshold ( , 2 1)aF n N n− − with the significant level α  in 
F distribution. Then we can regard series X as the Granger-Cause of Y . 

As mentioned above, we have verified the stationary of the traffic series of two larger-scale 
WLAN (an airport and a shopping mall). In the following, Granger Causality is tested for our 
data sets. The data sets are from real networks, an international airport equipped with 432 APs, 
and a shopping mall equipped with 182 APs. The popular matlab toolbox ‘Granger Causal 
Connectivity Analysis’ [28] is employed. Regression order is determined by AIC (Akaike’s 
information criterion). The threshold of F-test is 0.05. The ratio of APs that have Granger 
Causality in airport and shopping mall respectively are shown in Table 2. 
 

Table 2. The ratio of Granger Causality in airport and shopping mall scenarios 
 Airport Shopping Mall Total 

The number of APs 432 182 614 
The number of APs 
that has at least one 
granger neighbor 

370 161 531 

ratio 85.6% 88.5% 86.5% 
 
As shown in Table 2, the APs that have at least one granger neighbor account for at least 

85% of the total, which means Granger Causality is universal in our scenarios. So we try to 
utilize Granger Causality to forecast the traffic flow in WLANs. 

3.3 Impact of Granger Causality in Traffic Forecasting 
In the previous section, Granger Causality is verified widespread in our scenarios. 

Therefore we investigate how this phenomenon affects the performance of prediction in this 
section. 

Information entropy is a metric to measure the uncertainly of a system. A lower information 
entropy value means the system is more predictable. So we uses the information entropy of 
time series to evaluate how prediction can be improved based on Granger Causality. Three 
kinds of information entropies values are calculated, namely the information entropy of the 
target traffic series, the conditional entropy of target traffic series and all the other traffic series, 
and the conditional entropy of target traffic series and its granger neighbors traffic series, 
respectively. 

Firstly the traffic series are quantified to finite values. The quantitative levels m  are set to 
50, 100, 200 respectively. 1 2{ , , }nD d d d=   is the donation of data set. And id  is the traffic 
series of i-th AP. Then we quantify each traffic series with level m  and obtain 

1 2{ , , }i i i imS S S S=  , where iS  is the quantization of id . 
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The information entropy of the traffic series of  i-th AP is defined as: 

2
1

( ) ( ) log ( ( ))
m

i ij ij
j

H S p s p s
=

=∑                                             (3) 

For the given -th traffic series, the conditional entropy of i-th traffic series can be expressed 
as: 

2
1 1
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u t

H S S p s p s s p s s
= =

=∑∑                       (4) 

Obviously, a lower ( / )i jH S S value means a higher definiteness of the system iS  
conditioned on jS , namely iS  is more predictable. Therefore, conditional entropy is a proper 
metric to measure how predictable the traffic series is [29]. 

Let 1 2{ , , }nU u u u=  ,  iu  is the average conditional entropy of i-th AP at the condition of 
every other AP. So we can obtain: 

1
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We define the sets  1 2{ , , }nV v v v=   and 1 2{ , , }nW w w w=  . iv  is the average conditional 
entropy of i-th AP at the condition of granger neighbors and iw  is the APs set of the granger 
neighbors of i-th AP. Then we can obtain: 

 1 ( / )
j i

i i j
S wi

v H S S
w ∈

= ∑   (6) 

 

The three kinds of information entropies mentioned above (the information entropy of the 
target traffic series, the conditional entropy of target traffic series and all the other traffic series, 
and the conditional entropy of target traffic series and its granger neighbors traffic series) are 
donated as ( ), ,H S u v  respectively. H(S)  is measure ofaveraged indefiniteness of  traffic for 
an AP without any other referenced informtion. u is measure of averaged indefiniteness of 
traffic for an AP conditioned on one of its neighbors. v  is measure of averaged indefiniteness 
of traffic for an AP conditioned on one of its granger neighbors. We calculate those three kinds 
of information entropies for 432 APs of airport and 182 APs of shopping mall, and find that in 
the airport scenario, 87.5% of the total APs follow the relationship as ( )H S u v> > , while the 
ratio is 95.8% in the scenario of shopping mall.The results indicate that multivariate time 
series make system more predictable then univariate time series in our scenarios, in particular, 
with the help of Granger Causality, the target traffic series becomes much more predictable 
compared to take irrelevant AP into account. 

For demonstration and explaination, we take 18 APs of airport scenario and 26 APs of 
shopping mall scenario for example, and the values of ( ), ,H S u v are shown in Fig. 1 and Fig. 
2.We find that some conditional entropy v  is nearly zero, i.e. the traffic of target AP could be 
determined with the traffic of the granger neighbors , which indicates that the traffic of granger 
neighbors is in great relevance with target APand helpful for traffic predication. As showed in 
Fig. 1 and Fig. 2, the values of ( ), ,H S u v  vary over different quantitative levels, but the 
relative of H(S) , u  and v  is same. 
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Fig. 1.  The value of  ( ), ,H S u v  for airport scenario with different quantitative levels 

 

 
Fig. 2. The value of  ( ), ,H S u v  for shopping mall scenario with different quantitative levels 
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3.4 The Causing of Granger Causality in WLANs 
The above analysis shows that Granger Causality is universal in our scenarios. Moreover, 

the prediction of network traffic can be improved by such relationship. Here we try to explain 
this physical phenomenon in the view of human behavior. Wireless channel is open and shared 
by all APs. Adjacent APs may share overlapping areas. The movement of users in these areas 
can cause the re-association between users and APs, and then produce the causal traffics in 
adjacent APs. So Granger Causality in WLANs attributes to the  movement of users and 
shared channel of APs. 

For larger-scale WLAN, the network is heavy dense, with the people show strong 
organization in mobility. For example, in the airport, people transfering abroad usually go 
from flight connections to International terminal. So if a domestic flight with many passengers 
arrives, many users associate with  AP in flight connections, which leads to the incrased traffic 
within half an hour. But after then the traffic in the AP decreases gradually while the traffic of 
AP in the entrance of International terminal increases progressively, because many users 
de-associate with AP in flight connections and re-associate with AP in International terminal .  

Thus the correlation between APs may be generated by the mobility of human, which 
results in the handoff between different APs, and then the causality between traffic of different 
APs. In other words, the causality between different traffics also reflects the activity regularity 
of people. 

Literature [13] also revealed the similar Granger Causality in cellular network, which 
indicates that the correlation between nodes in wireless channel is universal. This discovery is 
useful in network management and traffic prediction in wireless network. 

4. Traffic Prediction Method 
As it mentioned above, the Granger Causality is widespread in our scenarios. The 

performance of prediction towards target node can be enhanced by utilizing nodes that shares 
Granger Causality with it. As VAR (Vector Auto-Regression) is constraints-free in a predict 
process, it is quite suit for our problems. Compared to univariate time series, multivariate time 
series is more complete and identified, as well as introducing redundant and noise information. 
Therefore, we employ the APs sharing Granger Causality with target AP to avoid redundant 
and noise information, and applies VAR model to predict traffic flow of target AP. So we 
develop the traffic prediction method – GCVAR (Granger Causality and Vector 
Auto-regression). There are two primary steps for GCVAR. In the first step, neighboring APs 
sharing Granger Causality with the target AP is computed, which was introduced above. In the 
second step, the traffic of target AP is predicted using the past traffic of causal APs through 
VAR. In the following, the second step would be introduced in details. 

4.1 Brief Introduction to VAR 
VAR model is widely used in statistics and forecast. It is the simultaneous form of 

AR(Auto-Regression) model in univariate time series. Without exogenous variables, a VAR 
model with order p  can be expressed as: 
 1 1 2 2t t t p t p ty c A y A y A y e− − −= + + + + +      (7) 

Where c  is a 1n×  constant vector. ty  is 1n× , in which each element is the value of 
corresponding variable in model at time t . iA  is the n n×  parameter matrix to be predicted, 
indicating the transforming relation between ty  and 1ty − . te  is an 1n×  error vector, which 
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satisfies to: 
(1) ( ) 0tE e =  
(2) ( ')t tE e e = Ω , and Ω  is a n n×  positive definite matrix 
(3) ( ') 0t t kE e e − = , with 0k ≠ , which means error terms are independent. 

4.2 Application of VAR in Traffic Prediction 
Let 1 2( ) ( ( ), ( ), ( ))kV t V t V t V t=   denotes the traffic series of network, ( )kV t  is the traffic 

series of k-th AP. Note that all traffic series are synchronous. So the VAR model with 
order p of network traffic can be expressed as Eq(7). 

 1( ) ( 1) ( ) ( )pV t C AV t A V t p u t= + − + + − +                         (8) 

Where '
1 2( ) ( ( ), ( ), ( ))ku t u t u t u t=  , in which each component is identically distributed, i.e. 

( ) ~ (0, )u t N Ω . Ω  is the covariance matrix of ( )u t . '
1 2( , , )kC C C C=  is the constant vector. 

( 1,2, )iA i p=   is the parameter of VAR model which is obtained based on the estimation 
from history traffic. It is the component of coefficient matrix, with the form as follows: 
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We apply MLE (Maximum Likelihood Estimation) to estimate the parameters of VAR 

model. According to Eq(8), we can obtain: 
1 1( ) ( )t t p t pV A V A V utµ µ µ− −− = − + + − +                        (9) 

When rewrite Eq(8) to a matrix form, we can obtain: 
WS A W U= ⋅ +                                                   (10) 

Where 1( , , )T K TWS V Vµ µ ×= − − , 1( , , )pA A A=  ,

1

t

t

t p

V
WS

V

µ

µ− +

 −
 =  
 − 

 , and 

0 1( , , )TW WS WS −=  , 1( , , )TU u u=  . 
The log-likelihood function can be expressed as: 

 11ln ( , , ) ln 2 ln [( . ) ' ( . )]
2 2 2

KT Tl a tr WS AW WS AWµ π −Ω = − − Ω − − Ω −      (11) 

Where ( )a vec A= . Then we take partial derivative withµ , a ,Ω respectively, and set the 
equations to 0. The maximum likelihood estimation of the three parameters are: 

1

1 1 1

1 ( ) ( )
p pT

k i t i t i
i t i

I A V AV
T

µ −
−

= = =

= − −∑ ∑ ∑                                   (12) 

' 1[( ) ]( )ka VV V I V µ−= ⊗ −                                           (13) 
'1 ( )( )WS AV WS AV

T
Ω = − −                                           (14) 
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The lag order used in equations above is decided by AIC (Akaike’s information criterion): 

  
22( ) ln ( ) pKAIC p p

T
= Ω +  (15) 

We set the maximum lag order maxp , and set p  from 1 to maxp . Finally, the p that 
minimizes ( )AIC p is selected as the best lag order for the modeling of VAR. 

5. Experiment 
In this section, we apply GCVAR to predict the AP traffic in two above real networks, and 

compare the performance of GCVAR, ARIMA, and WRIMA. The comparison of accuracy 
and complexity are provided. 

5.1 Scenarios 
The data used in this paper are from real networks, an international airport equipped with 

432 APs, and a shopping mall equipped with 182 APs. We utilize the management platform to 
collect traffic data once an hour in two areas. And finally we acquire traffic data with 672 time 
moments (28 days). Note that both scenarios have the same timelines. Both scenarios support 
802.11 b/g/n protocols. 

To demonstrate the performance of GCVAR, we selected 18 APs from data set of airport 
scenario, and 26 APs from data set of shopping mall scenario. Both regions have relatively 
dense crowd with high mobility and the accurate traffic prediction is difficult. We apply 
GCVAR model, WARIMA model and ARIMA model for these two senerios and compare the 
results. 

5.2 Performance Comparison 
In purpose to compare the accuracy of these three methods, we collect the percentage of 

absolute errors between prediction results and the real values in the airport and mall for every 
AP.  The cumulative distribution of absolute errors in the airport and in the mall are shown in 
Fig. 3 and Fig. 4 respectively. The CDF of other APs are in similar trend. 

As it shows in Fig. 3, the prediction results of GCVAR model are better than that of ARIMA 
model and slightly worse than that of WARIMA model in airport scenario. Among the 
prediction results based on WARIMA model , 97% of absolute errors are less than 10%. As for 
GCVAR and ARIMA model, the percentage declines to 94%. While in Fig. 4, the prediction 
results of GCVAR model is better than that of ARIMA and WARIMA. In  GCVAR, 86% of 
absolute errors is less than 5%, while the percentage of ARIMA and WARIMA are only 80%.  

We also note that WARIMA costs 3396.6s in the prediction process running, and ARIMA 
cost 596.62s, GCVAR only costs 27.689s. The running time of GCVAR model is shorter than 
the other two models by two orders of magnitude, which indicates that GCVAR model is much 
effective compared with ARIMA and WARIMA. GCVAR sacrifices a little accuracy for a 
much lower time consumption. Decomposition in multiple scales is needed in WARIMA, so it 
is much time-consuming. In GCVAR, causal neighbors and related information are computed 
before VAR algorithm is used, so the time consumption is least. 
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Fig. 3. Cumulative distribution of absolute errors in the airport 

 
Fig. 4. Cumulative distribution of absolute errors in the mall 
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Take AP18 in the airport for example, the comparison of real traffic and prediction results 
are shown in Fig. 5. In the traffic spike, WARIMA is obviously more accurate than GCVAR, 
and GCVAR is more accurate than ARIMA. 

 
Fig. 5. Comparison of traffic prediction of AP18 in the airport 

 
In order to compare the stability of different algorithms, we analyze the time percentages for 

different percentage of absolute errors in all APs in two scenarios. For percentage of absolute 
errors less than 10%, the time percentages of the correct prediction in the airport are shown in 
Fig. 6. For percentage of absolute errors less than 5%, the time percentages of the correct 
prediction in the mall are shown in Fig. 7. 

 
 

 
Fig. 6. The time percentage of correct prediction in the airport with absolute errors less than 10% 
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Fig. 7. The time percentage of correct prediction in the mall with absolute errors less than 5% 
 
As it shown in Fig. 6 and Fig. 7, the prediction results of ARIMA model and WARIMA 

model fluctuate obviously in different scenarios, while GCVAR model performs relatively 
stable. The small difference of prediction accuracy among the three models also suggests that 
the traffic patterns of the APs under a certain scenario are close. Fig. 6 and Fig. 7 also show 
that in the airport, WARIMA performs the best, however, WARIMA is the most 
time-consuming. While in the mall, GCVAR outperforms other algorithms, as well as most 
time-saving. It is also verified in the experiment that although GCVAR is less accurate than 
WARIMA in some cases, it is the most stable and time-saving. 

In WARIMA, network traffic series are decomposed with more complex factor into 
sub-series on different scales, so both profile and details could be extracted, but it is very 
time-consuming. If the burst of traffic is prominent or non-stationary, WARIMA shows 
correct prediction obviously in more time because the details with high frequency information 
could be predicted in small scale, such as in the airport scenario. Otherwise the performance of 
WARIMA could be similar to ARIMA because only profile information needed to be captured 
in both algorithms, such as in the mall scenario. But only the traffic of target AP is used for 
prediction in WARIMA, while traffics of causal neighboring APs are used in GCVAR, so in 
the mall scenario GCVAR is obviously better than others. Also details could not be predicted 
very accurately in GCVAR, so GCVAR performs worse than WARIMA in the airport 
scenario. But GCVAR is more stable no matter the traffic is rich in high frequency information 
or not. 

6. Conclusion 
In this paper traffic prediction based on GCVAR in large-scale WLANs is performed. 

Based on two real networks, we reveal the widespread of Granger Causality in our scenarios. 
In combination with information entropy, the prediction performance of target AP can be 
enhanced by taking the history data of its granger neighbors into account. We proposes 
GCVAR, which takes APs series sharing Granger Causality based on VAR (Vector 
Auto-regression) into account, to predict network traffic for larger-scale WLAN. Simulation 
shows that GCVAR is more effective compared to ARIMA and WARIMA. Besides, GCVAR 
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is more practical since it consumes two orders of magnitude less than that caused by 
ARIMA/WARIMA. 

GCVAR reduces the time-consumption to a significant level by sacrificing little accuracy, 
however, the correlation between APs is obtained from the perspective of statistics. In our 
future work, we will try to combine GCVAR with principal component analysis, or other 
clustering algorithms, so that physical meaning is more obvious, as well as to improve the 
performance of GCVAR. 
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