• Title/Summary/Keyword: Time Scales

Search Result 850, Processing Time 0.029 seconds

Quantitative separation of impacting factors to runoff variation using hydrological model and hydrological sensitivity analysis (수문모형과 수문학적 민감도분석을 이용한 유량변동 요인의 정량적 분리)

  • Kim, Hyeong Bae;Kim, Sang Ug;Lee, Cheol-Eung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.3
    • /
    • pp.139-153
    • /
    • 2017
  • The variation in runoff due to global climate change and urbanization should be identified quantitatively because these two factors have been significantly accelerated during the last three decades in South Korea. However, only a few research to analyze the impacts due to two factors over different time scales can be found. Therefore, in this study, the hydrological model based approach and the hydrological sensitivity approach were used to separate relative impacts by two factors on monthly, seasonal, and annual time scales at the Soyang River upper basin and the Seom River basin in South Korea. The 3 techniques such as the double mass curve method, the Pettitt's test, and the BCP analysis were performed to detect change point occurred by abrupt change in the collected observed runoff. After detection of change ponts, SWAT models calibrated on the natural periods were used to calculate the changes due to human activities. Also, 6 Budyko based methods were auxiliary to verify the results from hydrological based approach.

Analysis of Financial Management Activities in Elementary School Foodservices (초등학교급식에서 수행되는 급식비 관련 재무관리 업무분석)

  • Choe, Eun-Hui;Lee, Jin-Mi;Gwak, Dong-Gyeong
    • Journal of the Korean Dietetic Association
    • /
    • v.2 no.2
    • /
    • pp.123-140
    • /
    • 1996
  • The purpose of this study was to examine financial management practices in elementary school foodservices. Respondents were asked to provide information on demographics, operational characteristics, financial management activities(responsibility, importance and time demand). Data were collected from 106 elementary school foodservice using the mail questionnaire. The results were as follows 1. Time demand of 14 financial management activities was examined. The results of time-demand showed that most financial activities were performed about once per month. Reporting, inventory checking and production cost accounting were performed several times per week. 2. Major financial management activities performed by school dietitians were inventory checking, record keeping, production cost accounting, and foodservice operation planning. 3. Results of the importance rating of 14 financial management activities showed that the production cost accounting, budgeting, controlling meal costs, reporting the national treasury accounts, and inventory checking were rated as very important(4.00-4.49). Factor analysis was conducted on the importance ratings. Five activities were differentiated such as budgeting, record keeping, cost controlling, cost accounting, and reporting. The cost controlling task was identified at the most important one among them. 4. Important ratings for reporting were found to be significantly different by age, and years of experience. The younger and the less experienced were responded with higher scores on reporting. Analysis of variance for the importance scales by meal costs per one person, food cost percentage, labor cost percentage was conducted, but significant differences were not founded.

  • PDF

Chaotic Analysis of Water Balance Equation (물수지 방정식의 카오스적 분석)

  • 이재수
    • Water for future
    • /
    • v.27 no.3
    • /
    • pp.45-54
    • /
    • 1994
  • Basic theory of fractal dimension is introduced and performed for the generated time series using the water balance model. The water balance equation over a large area is analyzed at seasonal time scales. In the generation and modification of mesoscale circulation local recycling of precipitation and dynamic effects of soil moisture are explicitly included. Time delay is incorporated in the analysis. Depending on the parameter values, the system showed different senarios in the evolution such as fixed point, limit cycle, and chaotic types of behavior. The stochastic behavior of the generated time series is due to deterministic chaos which arises from a nonlinear dynamic system with a limited number of equations whose trajectories are highly sensitive to initial conditions. The presence of noise arose from the characterization of the incoming precipitation, destroys the organized structure of the attractor. The existence of the attractor although noise is present is very important to the short-term prediction of the evolution. The implications of this nonlinear dynamics are important for the interpretation and modeling of hydrologic records and phenomena.

  • PDF

Variation of reaction time and accuracy of mental work with strength of whole-body activity gradually increasing (강도가 점증하는 전신활동에 따른 반응시간의 변화와 정신작업의 정확도)

  • 김정만
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.9 no.1
    • /
    • pp.56-62
    • /
    • 2004
  • This paper examined the change in reaction time and accuracy of mental work by physical activity. A treadmill-equipped instrument is used to attain several levels of physical activity. Subjects were recruited from college students and football players; and they were instructed to run on a treadmill at different speeds. In order to determine the individual levels of physical activity of subjects, in this paper, Borg's-RPE scales which indicates subjective levels of physical activity were obtained. And reaction time was evaluated before and after running by arithmetic calculation test Restricted within the limit of this experiment, the results of this study showed that arithmetic calculation performance as a scale of accuracy of mental work rather increase after the exercise even though there are slight difference among the subjects.

  • PDF

Variations of SST around Korea Inferred from NOAA AVHRR Data

  • Kang, Yong-Q.;Hahn, Sang-Bok;Suh, Young-Sang;Park, Sung-Joo
    • Korean Journal of Remote Sensing
    • /
    • v.17 no.2
    • /
    • pp.183-188
    • /
    • 2001
  • The NOAA AVHRR remotely sensed SST data, collected by the National Fisheries Research and Development Institute (NFRDI), are analyzed in order to understand the spatial and temporal distributions of SST in the sea near korea. Our study is based on 10-day SST images during last 7 years (1991-1997). For a time series analysis of multiple SST images, all of images must be consistent exactly at the same position by adjusting the scales and positions of each SST image. We devised an algorithm which automatically detects cloud pixels from multiple SST images. The cloud detection algorithm is based on a physical constraint that SST anomalies in the ocean do not exceed certain limits (we used $\pm$3$^{\circ}C$ as a criterion of SST anomalies). The remotely sensed SST data are tuned by comparing remotely sensed data with observed SST at coastal stations. Seasonal variations of SST are studied by harmonic fit of SST normals at each pixel and the SST anomalies are studied by statistical method. It was found that the SST anomalies are rather persistent for one or two months. Utilizing the persistency of SST anomalies, we devised an algorithm for a prediction of future SST. In the Markov lprocess model of SST anomalies, autoregression coefficients of SST anomalies during a time elapse of 10 days are between 0.5 and 0.7. The developed algorithm with automatic cloud pixel detection and rediction of future SST is expected to be incorporated to the operational real time service of SST around Korea.

Evolution of the Tropical Response to Periodic Extratropical Thermal Forcing

  • Yechul Shin;Sarah M. Kang;Ken Takahashi;Malte F. Stuecker;Yen-Ting Hwang;Doyeon Kim
    • Journal of Climate Change Research
    • /
    • v.34 no.15
    • /
    • pp.6335-6353
    • /
    • 2021
  • This study examines the temporal evolution of the extratropically forced tropical response in an idealized aquaplanet model under equinox condition. We apply a surface thermal forcing in the northern extratropics that oscillates periodically in time. It is shown that tropical precipitation is unaltered by sufficiently high-frequency extratropical forcing. This sensitivity to the extratropical forcing periodicity arises from the critical time required for sea surface temperature (SST) adjustment. Low-frequency extratropical forcing grants sufficient time for atmospheric transient eddies to diffuse moist static energy to perturb the midlatitude SSTs outside the forcing region, as demonstrated by a one-dimensional energy balance model with a fixed diffusivity. As the transient eddies weaken in the subtropics, a further equatorward advection is accomplished by the Hadley circulation. The essential role of Hadley cell advection in connecting the subtropical signal to the equatorial region is supported by an idealized thermodynamical-advective model. Associated with the SST changes in the tropics is a meridional shift of the intertropical convergence zone. Since the time needed for SST adjustment increases with increasing mixed layer depth, the critical forcing period at which the extratropical forcing can affect the tropics scales linearly with the mixed layer depth. Our results highlight the important role of decadal-and-longer extratropical climate variability in shaping the tropical climate system. We also raise the possibility that the transient behavior of a tropical response forced by extratropical variability may be strongly dependent on cloud radiative effects.

MAGNETIC HELICITY CHANGES OF SOLAR ACTIVE REGIONS BY PHOTOSPHERIC HORIZONTAL MOTIONS

  • MOON Y.-J.;CHAE JONGCHUL;PARK Y. D.
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.37-44
    • /
    • 2003
  • In this paper, we review recent studies on the magnetic helicity changes of solar active regions by photospheric horizontal motions. Recently, Chae(200l) developed a methodology to determine the magnetic helicity change rate via photospheric horizontal motions. We have applied this methodology to four cases: (1) NOAA AR 8100 which has a series of homologous X-ray flares, (2) three active regions which have four eruptive major X-ray flares, (3) NOAA AR 9236 which has three eruptive X-class flares, and (4) NOAA AR 8668 in which a large filament was under formation. As a result, we have found several interesting results. First, the rate of magnetic helicity injection strongly depends on an active region and its evolution. Its mean rate ranges from 4 to $17 {\times} 10^{40}\;Mx^2\;h^{-1}$. Especially when the homologous flares occurred and when the filament was formed, significant rates of magnetic helicity were continuously deposited in the corona via photospheric shear flows. Second, there is a strong positive correlation between the magnetic helicity accumulated during the flaring time interval of the homologous flares in AR 8100 and the GOES X-ray flux integrated over the flaring time. This indicates that the occurrence of a series of homologous flares is physically related to the accumulation of magnetic helicity in the corona by photospheric shearing motions. Third, impulsive helicity variations took place near the flaring times of some strong flares. These impulsive variations whose time scales are less than one hour are attributed to localized velocity kernels around the polarity inversion line. Fourth, considering the filament eruption associated with an X1.8 flare started about 10 minutes before the impulsive variation of the helicity change rate, we suggest that the impulsive helicity variation is not a cause of the eruptive solar flare but its result. Finally, we discuss the physical implications on these results and our future plans.

Interoperability Analysis of GPS and Galileo on Time (GPS와 Galileo 시각의 상호운용성 분석)

  • Shin, Mi-Young;Song, Se-Phil;Ko, Jae-Young;Yang, Sung-Hoon;Lee, Sang-Jeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.10
    • /
    • pp.979-984
    • /
    • 2010
  • The users who use a combined GPS/Galileo receiver will benefit from an improved availability of the combined system and a reduced dependence on one particular positioning system. However, these users must solve the problem of an offset between the time scales of GPS and Galileo (GGTO). GGTO must be analyzed for not only a navigation system but also a timing system requesting precise time service. This paper analyzes the interoperability problem in a combined GPS/Galileo timing receiver and estimates the timing performance under various assumptions. The GPS real measurements were collected by using the commercial timing receiver from Ashtech Ltd. and the Galileo measurements were generated by a simulation software. A suitable test scenario set-up and the performance in a point of timing stability was evaluated.

Energy-Aware Scheduling Technique to Exploit Operational Characteristic of Embedded Applications (임베디드 응용프로그램의 동작 특성을 이용한 에너지 인식 스케쥴링 기법)

  • Han, Chang-Hycok;Yoo, Joon-Hyuk
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Efficient power management plays a crucial role to strengthen competitiveness in the market of portable mobile commodities. This paper presents a proactive power management technique, called by Energy-Aware Scheduling policY (EASY), to exploit the sleep time information of running applications. Different from previous power management approaches focusing on power conservation in standby mode, the proposed scheme characterizes each application program's operational characteristic in active mode by observing how long the task stays in sleep state of CPU scheduler. Based on the measured sleep time, the proposed EASY speculates an adequate CPU clock frequency according to the current CPU workload and scales the frequency directly to the predicted one. Experimental results show that the proposed scheme reduces the power consumption by 10-30% on average compared to traditional DPM approach, with a minimal impact on the performance overhead.

Power-Aware Scheduling for Mixed Real-Time Tasks (주기성과 산발성 태스크가 혼합된 시스템을 위한 전력절감 스케줄링 기법)

  • Gong, Min-Sik;Jeong, Gun-Jae;Song, Ye-Jin;Jung, Myoung-Jo;Cho, Moon-Haeng;Lee, Cheol-Hoon
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.1
    • /
    • pp.83-93
    • /
    • 2007
  • In this paper, we address a power-aware scheduling algorithm for a mixed real-time system which consists of periodic and sporadic tasks, each of which is characterized by its minimum period, worst-case execution requirement and deadline. We propose a dynamic voltage scaling algorithm called DVSMT(DVS for mixed tasks), which dynamically scales down the supplying voltage(and thus the frequency) using on-line distribution of the borrowed resources when jobs complete while still meeting their deadlines. With this scheme, we could reduce more energy consumption. As the proposed algorithm can be easily incorporated with RTOS(Real-Time Operating System), it is applicable for handhold devices and sensor network nodes that use a limited battery power. Simulation results show that DVSMT saves up 60% more than the existing algorithms both in the periodic-task and mixed-task systems.