Browse > Article
http://dx.doi.org/10.5303/JKAS.2003.36.spc1.037

MAGNETIC HELICITY CHANGES OF SOLAR ACTIVE REGIONS BY PHOTOSPHERIC HORIZONTAL MOTIONS  

MOON Y.-J. (Big Bear Solar Observatory, NJIT, Korea Astronomy Observatory)
CHAE JONGCHUL (Big Bear Solar Observatory, NJIT, Department of Astronomy and Space Science, Chungnam National University)
PARK Y. D. (Korea Astronomy Observatory)
Publication Information
Journal of The Korean Astronomical Society / v.36, no.spc1, 2003 , pp. 37-44 More about this Journal
Abstract
In this paper, we review recent studies on the magnetic helicity changes of solar active regions by photospheric horizontal motions. Recently, Chae(200l) developed a methodology to determine the magnetic helicity change rate via photospheric horizontal motions. We have applied this methodology to four cases: (1) NOAA AR 8100 which has a series of homologous X-ray flares, (2) three active regions which have four eruptive major X-ray flares, (3) NOAA AR 9236 which has three eruptive X-class flares, and (4) NOAA AR 8668 in which a large filament was under formation. As a result, we have found several interesting results. First, the rate of magnetic helicity injection strongly depends on an active region and its evolution. Its mean rate ranges from 4 to $17 {\times} 10^{40}\;Mx^2\;h^{-1}$. Especially when the homologous flares occurred and when the filament was formed, significant rates of magnetic helicity were continuously deposited in the corona via photospheric shear flows. Second, there is a strong positive correlation between the magnetic helicity accumulated during the flaring time interval of the homologous flares in AR 8100 and the GOES X-ray flux integrated over the flaring time. This indicates that the occurrence of a series of homologous flares is physically related to the accumulation of magnetic helicity in the corona by photospheric shearing motions. Third, impulsive helicity variations took place near the flaring times of some strong flares. These impulsive variations whose time scales are less than one hour are attributed to localized velocity kernels around the polarity inversion line. Fourth, considering the filament eruption associated with an X1.8 flare started about 10 minutes before the impulsive variation of the helicity change rate, we suggest that the impulsive helicity variation is not a cause of the eruptive solar flare but its result. Finally, we discuss the physical implications on these results and our future plans.
Keywords
Sun: magnetic fields; Sun: flare; Sun: filament; Sun: coronal mass ejection; Sun: photosphere;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Moon, Y.-J., Chae, J., Choe, G. S., Wang, H., Park, Y. D., Yun, H. S., Yurchyshyn, V. B., & Good, P. R. 2002a, Flare Activity and Magnetic Helicity Injection by Photospheric Horizontal Motions, ApJ, 574, 1066 (Paper I)   DOI   ScienceOn
2 Moon, Y.-J., Chae, J., Wang, H., Choe, G. S., & Park, Y. D. 2002b, Impulsive Variations of Magnetic Helicity Change Rate associated with Eruptive Flares, ApJ, 580, 528 (Paper II)   DOI   ScienceOn
3 Choe, G. S. & Lee, L. C. 1992, Formation of solar prominences by photospheric shearing motions, Sol. Phys., 138, 291   DOI
4 Demoulin, P., Mandrini, C. H., van Driel-Gesztelyi, L., Thompson, B. J., Plunkett, S., Kovari, Zs., Aulanier, G., & Young, A. 2002a, What is the source of the magnetic helicity shed by CMEs? The long-term helicity budget of AR 7978, A&A, 382, 650   DOI   ScienceOn
5 Anwar, B., Acton, B. W., Hudson, H. S., Makita, M., McClymont, A. N., & Tsuneta, S. 1993, Rapid Sunspot Motion during a Major Flare, Sol. Phys., 147, 287   DOI
6 Berger, M. A., & Field, G. B. 1984, The topological properties of magnetic helicity, J. Fluid Mech., 147, 133   DOI   ScienceOn
7 Burlaga, L. F. 1988, J. Geophys. Res., 93, 7217   DOI
8 Canfield, R. C., & Pevtsov, A. A. 1999, Helicity and reconnection in the solar corona: observations, in Magnetic Helicity in Space and Laboratory Plasmas, ed. M. R. Brown, R. C. Canfield, & A. A. Pevtsov (Geophys. Monogr. 1ll; Washington, DC: AGU), 197
9 Chae, J. 2000, The magnetic helicity sign of filament chirality, ApJ, 540, L115   DOI   ScienceOn
10 Chae, J. 2001, Observational Determination of the Rate of Magnetic Helicity Transport through the Solar Surface via the Horizontal Motion of Field Line Footpoints, ApJ, 560, L95   DOI   ScienceOn
11 Chae, J., Wang, H., Qiu, J., Goode, P. R., Strous, L., & Yun, H. S. 2001, The Formation of a Prominence in Active Region NOAA 8668. I. SOHO/MDI Observations of Magnetic Field Evolution, ApJ, 560, 476 (Paper IV)   DOI   ScienceOn
12 Chae, J., Moon, Y.-J., Rust, D. M., Wang, H, & Goode, P. R. 2003, Magnetic helicity pumping by twisted flux tube expansion, JKAS, 36, 33
13 Choe, G. S. & Cheng, C. Z. 2000, A Model of Solar Flares and Their Homologous Behavior, ApJ, 541, 449   DOI   ScienceOn
14 Pevtsov, A. A., & Canfield, R. C. 1999, Helicity of the photospheric magnetic field, in Magnetic Helicity in Space and Laboratory Plasmas, ed. M. R. Brown, R. C. Canfield, & A. A. Pevtsov (Washington, DC: AGU Geophys. Monogr. 111, 103
15 Wang, H., Spirock, T. J., Qiu, J., Ji, H., Yurchyshyn, V. B., Moon, Y.-J., Denker, C., & Goode, P. R. 2002, Rapid Changes of Magnetic Fields Associated with Six X-class Flares, ApJ, 576, 497   DOI   ScienceOn
16 Wheatland, M. S. 2000, Do Solar Flares Exhibit an Interval-size Relationship?, Sol. Phys., 191, 381   DOI   ScienceOn
17 November, L. J., & Simon, G. W. 1988, Precise propermotion measurement ofsolar granulation, ApJ, 333, 427   DOI
18 Parker, E. N. 1974, The Dynamical Properties of Twisted Ropes of Magnetic Field and the Vigor of New Active Regions on the Sun, ApJ, 191, 245   DOI
19 Pevtsov, A. A., Canfield, R. C., & Metcalf, T. R. 1995, Latitudinal variation of helicity of photospheric magnetic fields, ApJ, 440, L109   DOI
20 Rust, D. M. 1999, Magnetic helicity in solar filaments and coronal mass ejections, in Magnetic Helicity in Space and Laboratory Plasmas, ed. M. R. Brown, R. C. Canfield, & A. A. Pevtsov (Geophys. Monogr. 111; Washington, DC: AGU), 221
21 Nindos, A. & Zhang, H. 2002, Photospheric Motions and Coronal Mass Ejection Productivity ApJ, 573, L133   DOI   ScienceOn
22 Scherrer, P. H., Bogart, R. S., Bush, R. I., Hoeksema, J. T., Kosovichev, A. G., Schou, J., Rosenberg, W., Springer, L., Tarbel, T. D., Title, A., Wolfson, C. J., Zayer, I, MDI Engineering Team, 1995, The Solar Oscillation Investigation - Michelson Doppler Imager, Sol. Phys., 162, 129   DOI
23 Wang, H., Ewell, M. W., Jr., Zirin, H., & Ai, G. 1994, Vector magnetic fie1d changes associated with X class flares, ApJ, 424, 436   DOI
24 Moon, Y.-J., Chae, J., Wang, H., & Park, Y. D. 2003, Magnetic Helicity Change Rate Associated With Three X-class Eruptive Flares, Advances in Space Research, in press (Paper III)
25 Demoulin, P., Mandrini, C. H., van Dnel-Gesztelyi, L., Lopez Fuentes, M. C., & Aulamer, G. 2002b, The Magnetic Helicity Injected by Shearing Motions, Sol. Phys., 207, 87   DOI   ScienceOn
26 DeVore, C. R. 2000, Magnetic helicity generation by Solar Differential Rotation, ApJ, 539, 944   DOI   ScienceOn
27 Harvey, K. L. & Harvey, J. W. 1976, A study of the magnetic and velocity fields in an active region, Sol. Phys., 233, 246
28 Herdiwijaya, D., Makita, M., & Anwar, B. 1997, The Proper Motion of Individual Sunspots, PASJ, 49, 235   DOI
29 Kusano, K., T. Maeshiro, T. Yokoyama, & Sakurai, T. 2002, Measurement of magnetic helicity injection and free energy loading into the solar corona, ApJ, 577, 501   DOI   ScienceOn
30 Moon, Y.-.L, Choe, G. S., Yun, H. S., & Park, Y. D. 2001, Flaring time interval distribution and spatial correlation of solar major flares, J. Geophys. Res., 106, A12, 29951   DOI