• 제목/요약/키워드: Tilt estimation

검색결과 68건 처리시간 0.024초

팬틸트와 PSD 센서를 이용한 수중 로봇의 위치추적 시스템 구현 (Design of Position Tracing System for Underwater Vehicle Robots using Pan/Tilt and PSD Sensor)

  • 김명환;이승민;이흥호;이남호;김승호
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 학술회의 논문집 정보 및 제어부문 B
    • /
    • pp.536-539
    • /
    • 2003
  • This paper presents a study of position tracing system for Underwater Vehicle Robots(UVR) that is inspecting an atomic furnace. This system development is the basic research for the purpose of position estimation of UVR and preventing that UVR crash into the wall of an atomic furnace. For this purpose, Pan/Tilt Unit that is attached Laser is pointing PSD(Position Sensitive Detector) Sensor which is stuck to the upper side of UVR. Through this action, we can find the Position of UVR. In this paper, we construct the system for aiming the laser pointer at PSD Sensor using pan/tilt and study the optimum algorithm for finding the optional position that is located at the space which is pointable area by Laser device.

  • PDF

곤돌라형 외벽 유지보수 로봇의 수직위치 센서 개발에 관한 연구 (A Study on the Development of Height Estimation Sensor for Gondola-typed Façade Robot)

  • 윤종수;김동엽;박창우
    • 한국정밀공학회지
    • /
    • 제30권4호
    • /
    • pp.383-389
    • /
    • 2013
  • Demand for high-rising building has arisen. However, its maintenance is usually executed by labour. It could have a severe problem. We proposed a gondola robot to solve it. In this paper, we designed a height estimation sensor for this gondola. It is consist of pan-tilt unit, ARS sensor, and laser sensor. The pan-tilt unit keeps the laser sensor to indicate the gravity direction by referencing the ARS. The laser sensor's range is vertical distance from gondola to ground. However, if there is an obstacle under the gondola, the distance includes its height. To filter it out, we apply a Kalman filter for the height estimation. If the estimated height is changed extremely, the filter decides that there is an obstacle. Then, it remembers the height of obstacle. Other extreme changes of height estimations are reflected. The experimental results using the proposed sensor system show detail flow of the height estimation.

2 축 가속도계 기반 지자기 센서 모듈의 교정 및 가속도계 오차에 의한 방위각 계산 오차 분석 (Biaxial Accelerometer-based Magnetic Compass Module Calibration and Analysis of Azimuth Computational Errors Caused by Accelerometer Errors)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제20권2호
    • /
    • pp.149-156
    • /
    • 2014
  • A magnetic compass module must be calibrated accurately before use. Moreover, the calibration process must be performed taking into account any magnetic dip if the magnetic compass module has tilt angles. For this, a calibration method for a magnetic compass module is explained. Tilt error of the magnetic compass module is compensated using a biaxial accelerometer generally. The accelerometer error causes a tilt angle calculation error that gives rise to an azimuth calculation error. For error property analysis, error equations are derived and simulations are performed. In the simulation results, the accuracy of derived error equations is verified. If a biaxial magnetic compass module is used instead of a triaxial one, the magnetic dip and z-axis magnetic compass data must be estimated for tilt compensation. Lastly, estimation equations for the magnetic dip and z-axis magnetic compass data are derived, and the performance of the equations is verified based on a simulation.

경사각을 갖는 관성항법시스템 초기 정밀정렬의 오차 분석 (Error Analysis of Initial Fine Alignment for Non-leveling INS)

  • 조성윤
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.595-602
    • /
    • 2008
  • In this paper, performance of the initial alignment for INS whose attitude is not leveled is investigated. Observability of the initial alignment filter is analyzed and estimation errors of the estimated state variables are derived. First, the observability is analyzed using the rank test of observability matrix and the normalized error covariance of the Kalman filter based on the 10-state model. In result, it can be seen that the accelerometer biases on horizontal axes are unobservable. Second, the steady-state estimation errors of the state variables are derived using the observability equation. It is verified that the estimates of the state variables have errors due to the unobservable state variables and the non-leveling tilt angles of a vehicle containing the INS. Especially, this paper shows that the larger the tilt angles of the vehicle are, the larger the estimation errors corresponding to the sensor biases are. Finally, it is shown that the performance of the 8-state model excepting the accelerometer biases on horizontal axes is better than that of the 10-state model in the initial alignment by simulation.

움직임 추정에 기반한 단일 이동객체 추적 (Tracking of Single Moving Object based on Motion Estimation)

  • 오명관
    • 한국산학기술학회논문지
    • /
    • 제6권4호
    • /
    • pp.349-354
    • /
    • 2005
  • 컴퓨터 비전에 관한 연구는 인간의 시각 능력을 대신할 시스템을 구축하고자 하는 것으로 특히 이동 객체추적 시스템은 최근 중요한 연구 분야로 대두되고 있다. 본 연구에서는 움직임 추정에 기반 한 단일 이동객체를 추적할 수 있는 시스템을 제안하였다. 추적 시스템은 차영상 기법을 이용하여 객체의 움직임을 추정하곤 카메라의 Pan/Tilt를 제어함으로서 이동 객체를 추적할 수 있도록 하였다. 구현된 시스템은 영상획득 및 전처리 단계, 움직임 추정 단계, 객체 추적 단계로 구성하였다. 실시간 추적 실험을 실시한 결과 이동 객체의 움직임을 추정할 수 있었고, 추적 과정에서도 객체를 일어버리지 앉고 정상적으로 추적할 수 있었다.

  • PDF

산불 지표화에서의 바람에 의한 화염각 변화 산정식 도출에 관한 준-수치해석 연구 (Semi-numerical Study on the Flame Tilt Equation due to Wind on the Surface Fire in Forest Fire)

  • 김동현
    • 한국화재소방학회논문지
    • /
    • 제23권5호
    • /
    • pp.90-95
    • /
    • 2009
  • 산불의 확산에 있어 바람은 매우 중요한 인자이다. 바람은 또한 지형에 따라 변화되며 이로 인해 다른 확산형태를 가지게 된다. 따라서 산불의 확산속도 해석을 위해 먼저 풍속에 따른 화염각 변화를 살펴볼 수 있다. 이는 바람에 의해 변화된 화염각으로 인해 미연소 지표 대상물에 열전달의 차이를 가져오기 때문이다. 풍속이 증가할수록 화염과 지표면이 가까워짐으로 인해 열전달이 증가되어 미연소물질이 착화온도에 빨리 도달하게 되어 화염의 확산속도가 빨라지게 된다. 따라서 본 연구에서는 바람에 의한 화염각 변화 산정식을 Froude number 관계식을 이용한 수치해석과 실험을 통해 제시하였다. 그 결과, Froude number 계수 A=1.85를 제시하였고 제시된 식에 대한 실험 화염각의 평균 오차각은 약 $3.3^{\circ}$로 다른 모델식에 비해 실험값과 유사한 결과를 나타내었다. 향후, 이 연구를 통해 열전달 수치해석을 통한 화염확산연구에 활용될 수 있을 것으로 사료된다.

Improvement of Alignment Accuracy in Electron Tomography

  • Jou, Hyeong-Tae;Lee, Sujeong;Kim, Han-Joon
    • Applied Microscopy
    • /
    • 제43권1호
    • /
    • pp.1-8
    • /
    • 2013
  • We developed an improved method for tilt series alignment with fiducial markers in electron tomography. Based on previous works regarding alignment, we adapted the Levenberg-Marquardt method to solve the nonlinear least squares problem by incorporating a new formula for the alignment model. We also suggested a new method to estimate the initial value for inversion with higher accuracy. The proposed approach was applied to geopolymers. A better alignment of the tilt series was achieved than that by IMOD S/W. The initial value estimation provided both stability and a good rate of convergence since the new method uses all marker positions, including those partly covering the tilt images.

연속류 도로구간의 수막정보 발생구간 추정 및 적용연구 - 서울시 내부순환도로를 중심으로 - (Development of Hydroplaning Estimation on an Uninterrupted Road)

  • 이종학;노정훈;박석주
    • 한국도로학회논문집
    • /
    • 제19권6호
    • /
    • pp.147-153
    • /
    • 2017
  • PURPOSES : This research aims to estimate the occurrence of hydroplaning on roads based on the road alignment types and rainfall intensity in Seoul. METHODS : Three types of data were used for estimation of hydroplaning in this study. The Inner Circulation Road (12.5 km) to the Bukbu Expressway (7.4 km) in Seoul was selected as the test road and data was collected for road information using a probe-vehicle. Precipitation was observed from Automatic Weather System in Seoul. These data were interpolated by applying Inverse Distance Weighted Methodology for hydroplaning estimation. Finally, the water depth information of the roads was observed using an RCM411 device. RESULTS : This study demonstrated that the cross slope with small-angle-tilt or vertical section with large-angle-tilt are the primary factors causing hydroplaning on the roads. The flow velocity on steep slope is high; however, large drainage lengths result in hydroplaning on the roads. CONCLUSIONS : This result can contribute towards the reduction of car accidents on rainy days. Furthermore, information regarding hydroplaning can be delivered to drivers more rapidly and precisely in the future.

뇌성마비 환자의 자세 불균형 탐지를 위한 스마트폰 동영상 기반 보행 분석 시스템 (Smartphone-based Gait Analysis System for the Detection of Postural Imbalance in Patients with Cerebral Palsy)

  • 황윤호;이상현;민유선;이종택
    • 대한임베디드공학회논문지
    • /
    • 제18권2호
    • /
    • pp.41-50
    • /
    • 2023
  • Gait analysis is an important tool in the clinical management of cerebral palsy, allowing for the assessment of condition severity, identification of potential gait abnormalities, planning and evaluation of interventions, and providing a baseline for future comparisons. However, traditional methods of gait analysis are costly and time-consuming, leading to a need for a more convenient and continuous method. This paper proposes a method for analyzing the posture of cerebral palsy patients using only smartphone videos and deep learning models, including a ResNet-based image tilt correction, AlphaPose for human pose estimation, and SmoothNet for temporal smoothing. The indicators employed in medical practice, such as the imbalance angles of shoulder and pelvis and the joint angles of spine-thighs, knees and ankles, were precisely examined. The proposed system surpassed pose estimation alone, reducing the mean absolute error for imbalance angles in frontal videos from 4.196° to 2.971° and for joint angles in sagittal videos from 5.889° to 5.442°.

Tilt-rotor 항공기 동력계통 중량 추정에 대한 상쇄연구 (Trade-off Study of Propulsion Systems Weight Estimation for Tilt-rotor Personal Air Vehicle)

  • 이정훈
    • 항공우주시스템공학회지
    • /
    • 제8권4호
    • /
    • pp.1-6
    • /
    • 2014
  • This paper presents the trade-off study of conducting a survey of the weights for various kind of propulsion systems installed in the Smart Unmanned Aerial Vehicle TR-100, a tilt-rotor vehicle, which is developed by Korea Aerospace Research Institute, in order to predict the appropriate propulsion system for present and future Personal Air Vehicle, which has single mode and vertical take-off & landing. In order to perform the trade-off study, we set the requirements that the vehicle hovers for 1 hour with 1,000 kg maximum take off weights. In this study, the power systems are classified engine, which uses the fossil fuel - turboshaft engine, piston engine, diesel engine and rotary engine, and electric motor with fuelcell or Li-Ion battery. The results of trade-off study shows the power systems using fossil fuel are superior to using fuelcell or Li-Ion battery for weight of propulsion system. Also turboshaft engine is the best power system for the aspects of system weight, and the nexts are rotary engine, piston engine, diesel engine, electric motor with Li-Ion battery, and electric motor with fuelcell.