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INTRODUCTION

Electron tomography is a method for analyzing a material’s 
three-dimensional structure; its general resolution is between 
that of probe tomography (atomic resolution) and X-ray 
tomography (μm resolution) (Ziese et al., 2004). Electron 
tomography has been widely applied in structural biology 
and material science. Recently, it broadens its application 
to medical science (e.g., Lee et al., 2005; Kim et al., 2012). 
Developments in the electron tomography technique have 
improved the resolution, which was about 1 nm in 2004, to 2.4 
Å in research on three-dimensional structures using 10 nm 
gold nanoparticles (Midgley & Dunin-Borkowski, 2009; Scott 
et al., 2012). Electron tomography is performed in four steps: 
(1) acquisition of 2-D transmission electron microscopy 
(TEM) projection images through continuous tilting of a 
sample, (2) alignment of acquired images, (3) reconstruction 
of 3-D tomogram, and (4) final visualization (De Rosier & 
Klug, 1968).
Electron tomography is sensitive to the accuracy with which 
to obtain image data (Jou et al., 2008). Therefore, one of the 
most important steps in electron tomography is to align the 

TEM images in order. Since independent two-dimensional 
computation is continuously used for three-dimensional 
restructuring owing to the computation time and memory 
constraints of current computers, reliable results cannot be 
obtained if the images are not all aligned accurately.
There have been many studies on image alignment; for effective 
alignment, fiducial markers made of gold nanoparticles are 
used if possible. Luther et al. (1988) proposed a convenient 
method where many variables can be variously applied; 
their method has been used for IMOD S/W (Kremer et al., 
1996) and other applications. However, a drawback is that 
the fiducial markers should be present in every image. The 
fiducial markers can be observed even at high angles if the 
biological sample is thin or composed of light elements 
such as carbon; if the sample is thick or composed of heavy 
elements, the fiducial markers cannot be distinguished at 
high angles. In order to resolve this problem, Jing and Sachs 
(1991), Penczek et al. (1995), and others have proposed 
various methods that alter the least-squares method. For 
efficient analysis of the nonlinear least-squares method, Diez 
et al. (2006) combined Newton’s method and the conjugate 
gradient method.
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The objective of the present research is to develop several 
approaches to overcome the constraints of the methods that 
use fiducial markers to align images. We propose a modified 
model formula for image alignment and a nonlinear inverse 
formula that can deal with cases where a sufficient number 
of fiducial markers cannot be selected. The Levenberg-
Marquardt method (Levenberg, 1944; Marquardt, 1963), 
which is widely used in the geophysics, was used for 
mathematical formulation. An effective initial value selection 
method that can increase the stability and efficiency of 
convergence is also proposed. The feasibility of the proposed 
method was verified by tomography of a geopolymer sample.

MATERIALS AND METHODS

Model Formula
In order to align the images using markers, a mathematical 
model is first required to determine how the real location of 
the marker in three dimensions is mapped in each projected 
image. Various model formulas have been proposed by the 
previous studies noted in the introduction. In this study, we 
examine the formulas proposed by Luther et al. (1988) and 
Diez et al. (2006) that are widely used.
Luther et al. (1988) proposed the following model equation:

Pi
j=SiPAiMiyj+di       (1)

where Pi
j(j=1,···,np) represents the two-dimensional coor-

dinates of the i-th image of the j-th marker from the np 
number of markers; yj represents the j-th marker’s real 
location coordinates in three dimensions; and Mi is the 3×3 
diagonal matrix, where its elements mi

x, m
i
y, and mi

z represent 
the scale factors in the x, y, and z directions, respectively. Ai 
is the 3×3 rotation matrix that defines the tilted degree of 
the sample; only the y-axis tilt is considered here. P is the 
projection matrix that transforms the three-dimensional 
sample into a two-dimensional projection image, and Si is the 
two-dimensional rotation matrix of the i-th image. di is the 
two-dimensional parallel shift vector of the i-th image.
Diez et al. (2006) proposed the following formula:
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)( )()( ,, ii(i) zyx  is the i-th marker’s location, and φ  is the declination formed by the tilt axis 

and x–y plane. zP  is the z direction’s projection matrix, )( jθ  is the tilt angle, )( jα  is the 

rotation angle on the projection plane, and )( js  is the scale of the j-th image. ),( ),(),( ji
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represents the i-th marker’s two-dimensional location of the j-th image. 

The two above formulas both contain the angle of rotation about the y-axis, scale, two-

dimensional projection, and two-dimensional rotation, but they differ in several ways. In 

Luther et al.’s (1988) equation, three independent scale coefficients in the x, y, and z 

directions are given, whereas in Diez et al.’s (2006) equation, only one scale is applied after 

the projection. In particular, the latter adds a deviation term under the assumption that the tilt 

axis is not perpendicular to the z-axis due to equipment problems or experimental error. 

Furthermore, Diez et al. omit the parallel shift term, which may have been a typographical 

error or was already considered when the electron microscope image was obtained.  

Luther et al.’s (1988) method of using independent scales in the x, y, and z directions 

increases the flexibility for reducing various errors. Nevertheless, their results show some 

differences from those of an actual experiment, and it is realistic to use only one scale to 

compensate for the magnification error in each image after projection onto a two-dimensional 

plane (Jing & Sachs, 1991; Penczek et al., 1995). The deviation term added by Diez et al. 

(2006) can be useful for measuring the error that occurs in the actual experiment. However, 
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(x(i), y(i), z(i)) is the i-th marker’s location, and φ  is the 
declination formed by the tilt axis and x-y plane. Pz is the z 
direction’s projection matrix, θ (j) is the tilt angle, α(j) is the 
rotation angle on the projection plane, and s(j) is the scale of 
the j-th image. (px

(i,j), py
(i,j)) represents the i-th marker’s two-

dimensional location of the j-th image.
The two above formulas both contain the angle of rotation 
about the y-axis, scale, two-dimensional projection, and 
two-dimensional rotation, but they differ in several ways. 
In Luther et al.’s (1988) equation, three independent scale 
coefficients in the x, y, and z directions are given, whereas in 
Diez et al.’s (2006) equation, only one scale is applied after 
the projection. In particular, the latter adds a deviation term 
under the assumption that the tilt axis is not perpendicular 
to the z-axis due to equipment problems or experimental 
error. Furthermore, Diez et al. omit the parallel shift term, 
which may have been a typographical error or was already 
considered when the electron microscope image was obtained. 
Luther et al.’s (1988) method of using independent scales 
in the x, y, and z directions increases the flexibility for 
reducing various errors. Nevertheless, their results show 
some differences from those of an actual experiment, and 
it is realistic to use only one scale to compensate for the 
magnification error in each image after projection onto a two-
dimensional plane (Jing & Sachs, 1991; Penczek et al., 1995). 
The deviation term added by Diez et al. (2006) can be useful 
for measuring the error that occurs in the actual experiment. 
However, the value cannot be used in two-dimensional 
tomography computation; in the case of the tomography 
goniometer, the term can be omitted because it is designed 
to minimize the deviation. The parallel shift term that is 
omitted in equation (2) must be included in the usual image 
alignment procedure for tomography.
Based on the above background, the following model 
equation was developed in this study:
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dimensional parallel shift distance. The tilt angle θ (j), the 
rotation angle α(j), and the shift distance vector (dx
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Here, Np is the total number of selected markers used in the 
least-squares method. 
The least-squares equation above is a typical nonlinear inverse 
problem where the unknowns have complicated relations. 
The previous studies used various methods to solve this type 
of nonlinear least-squares problem. In the least-squares the 
stability of convergence is very important. 
Luther et al. (1988) did not choose a method that directly 
minimizes L, instead, used various conditions beforehand 
so that all the variables do not affect each other as much as 
possible. The most important condition of all in their method 
was that the marker used in the calculation should exist in 
each image. This condition makes the problem very simple 
and increases the stability of convergence (IMOD S/W also 
use this method). However, if the sample is too thick in 
practice or there is too much experimental noise, it becomes 
more difficult to distinguish the marker in the electron 
microscopy image at higher angles. Thus, it is difficult to 

secure this condition except for thin biological samples.
If L in equation (4) is to be minimized directly, the constraints 
devised by Luther et al. (1988) are eliminated because it is 
possible to make L that is composed of only distinguishable 
markers in each image. The nonlinear least-squares method 
should minimize L. The Levenberg-Marquardt (L-M) 
method, which is widely used for nonlinear inverse operations 
in various disciplines such as geophysics, was used in the 
present study. The L-M method is a method known to provide 
stability and efficiency of convergence of two methods: (1) 
the gradient descent method, where convergence is slow but 
accurately approaches the solution, and (2) Newton’s method, 
where convergence is fast but there is a risk of divergence.
The most difficult problems of using the L-M method to 
minimize L in equation (4) are the dependency between the 

Fig. 1. Sketch of a specimen subjected to 
(A) tilting, and (B) rotation and parallel 
shift. θ(j) is the tilt angle; α(j) and d are the 
rotation angle and parallel displacement 
on the projection plane, respectively.

Fig. 2. Schematic presentation of local and true minima. A and B are local 
minima, and C is a true (or global) minimum.
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variables and the initial value problem. Equation (3) actually 
has many minimum values because the parameters are closely 
related to each other; in this case, the initial value selection 
has a huge influence on the stability of convergence. With 
regard to the minimizing problem, the local minimum value’s 
influence is schematically illustrated in Fig. 2. Three minimum 
values exist in the figure, and the true minimum value of these 
three is at C(x=xm). If one of the points in the figure is selected 
as the initial value, the convergence direction progresses in the 
direction that reduces the RMS error. If P2(x0=x2) is selected 
as the initial value, it converges to C(x=xm), which is the true 
minimum value. However, if P1(x0=x1) or P3(x0=x3) is selected 
as the initial value, it converges toward the local minimum 
such as A and B and cannot converge to the accurate 
minimum value C. In short, for a complicated nonlinear least-
squares method, the initial value selection is very important. 
In particular, if there are many unknown variables and the 
dependency between each variable is strong, then convergence 
cannot be obtained properly; measures to solve this are also 
needed.
In the above equation, let the total number of images be N, 
the total number of marker categories be M, and the total 
number of marker coordinates selected in the entire image 
be Np. The given measurement is 2Np because there are Np 
number of (x, y) coordinates. Since there are five variables for 
each image such as scale, rotation angle, tilt angle, and x and 
y parallel shifts, the number of unknowns is 5N. Since the 
number of each marker’s (x, y, z) coordinate variables is 3M, 
the total number of unknowns is 5N+3M. For example, 100 
images and 30 marker categories have 590 unknown variables, 
so this problem would be difficult to solve because of the large 
inverse operations involved. Thus, in equation (3), since the 
tilt angle and various different variables are closely related, it is 

highly probable that direct minimization of all the unknowns 
do not converge. To overcome this issue, the rotating angle 
is determined beforehand using existing information in the 
present study; the rest of the variables are determined using 
inverse operation formulas. During estimation, the rotation 
angle is then taken again. This procedure is shown as a 
flowchart in Fig. 3: a two-step inversion process (main stage 
in the figure) and tilt estimate.
To improve the efficiency of the inversion process, a new 
method was developed. The initial estimation stage improves 
the initial value input before the main inversion operation 
process is performed (Fig. 3). In the initial estimation stage, 
the number of variables with strong dependency is reduced to 
minimize the number of unknowns. In this case, the number 
of local minimum values decrease, and a stable solution can 
be found. The unknown values found in this initial stage 
are reused as initial values in the main inversion operation, 
which increases the number of unknowns. This improves the 
stability of conversion and the speed of computation as well.

Test Data
TEM images of geopolymers were used to test the proposed 
method. The objective of the test is to examine the pore 
characteristics of the geopolymer. TEM observations were 
performed using the FEI Tecnai G2 Spirit at an acceleration 
voltage of 120 kV. A total of 107 images at a resolution of 
2,048×2,048 pixels were obtained at a magnification of 
40,000× and at 1o intervals in a tilt angle range of –55o to 

Fig. 3. Flowchart for the alignment process using the Levenberg-
Marquardt (L-M) method.

Fig. 4. Transmission electron microscopy bright-field micrograph of the 
geopolymer lamella. Gold fiducial markers and many small crystals were 
observed along with various-sized pores. White circles with numbers 
around them indicate selected markers and their ID numbers.
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53o. The markers were gold nanoparticles with diameters of 
10 nm. Fig. 4 shows the image when tilted at 0o; the white 
circle represents the location of the marker labeled with the 
marker’s ID number.
The circular white objects in the figure are the pores in the 
geopolymer, and the black objects are the diffraction effect of 
the gold nanoparticles and crystalline particles. Most of the 
samples were amorphous.

RESULTS AND DISCUSSION

When aligning the test data, it was observed that the 
crystalline materials’ diffraction, as shown in Fig. 4, affected 
the tomography results as noise because the change in 
contrast occurred frequently depending on tilting. Since the 
markers are difficult to distinguish, aligning the images was 
also difficult. For all 30 markers, we attempted to determine 
their locations on all TEM tilted images; markers difficult to 
distinguish were not selected. In total, 2,900 marker locations 
were selected. Among them, only six common markers 
(numbered 2, 6, 7, 12, 19, and 20 in Fig. 4) existed in all of the 
images.

IMOD S/W Results
First, IMOD S/W, which is widely used in electron tomography, 
was used for image alignment. Since IMOD S/W is based on 
Luther et al.’s (1988) theory, only the markers existing in all of 
the images could be used. Thus, only the six markers (2, 6, 7, 
12, 19, 206) in Fig. 4 were selected. Fig. 5 shows the markers’ 
locations in IMOD S/W and the alignment procedure. During 
the alignment, the RMS error was found to be 0.839, and it 
took about 8 seconds to solve.

Solution Using the Levenberg-Marquardt Method
Similar to IMOD S/W, six markers were selected and applied 
to the L-M method proposed in this study. Since there were 
107 images in total and six types of markers, the total number 
of measurements was 107×6×2=1,284. The total number 
of unknowns was 107×5+6×3=553. Initially, for the basic 
L-M process, we reduced the number of unknowns to 533–
107=425 by directly using the values of the tilt angles. The 
correct tilt angles were estimated after inversion.
For the improved L-M method, the initial selection procedure 
was conducted before inversion. Several variables were fixed 
beforehand to reduce the number of unknowns. First, the 
image tilted at 0o was projected assuming that the original 
sample was not modified through tilting, rotation, and parallel 
shifting. Then, the coordinate value selected for the image 
acquired at 0o was fixed beforehand. Since the difference in 
magnification of each image was very small, all of the scales 
were fixed to 1.0. Through these two procedures, the total 
number of unknowns in the L-M method used for the initial 
value selection procedure was significantly reduced. In this 
example, the number of unknowns was decreased by 119, 
and the total number of unknowns became 426–119=307. 
At this stage, the L-M method was applied to estimate the 
values of the unknown variables, followed by the regular L-M 
procedure.

Fig. 5. Window display showing the alignment process in the IMOD S/
W. Circles in the transmission electron microscopy image indicate the 
markers used for alignment. The residual error mean or root mean square 
error is shown in the lower left corner. 

Table 1. Alignment result using Levenberg-Marquardt (L-M) method 
with only six markers

  

L-M method

Without initial stage With initial stage

RMS residual 
(pixel)

CPU time
(s)

RMS residual
(pixel)

CPU time
(s)

Initial stage

Main stage

Tilt estimate

-

0.723

0.653

-

11.51

   0.02

1.508

0.723 

0.653 

2.95

6.21

0.02

Final result  RMS residual=0.653 pixel

 CPU time=11.53 s

 RMS residual=0.653 pixel

 CPU time=9.18 s

Table 2. Alignment result using Levenberg-Marquardt (L-M) method 
with all 30 markers

  

L-M method

Without initial stage With initial stage

RMS residual 
(pixel)

CPU time
(s)

RMS residual
(pixel)

CPU time
(s)

Initial stage

Main stage

Tilt estimate

-

0.913

0.895

-

78.55

   0.02

2.331 

0.913 

0.895 

   9.83

20.65

   0.02

Final result RMS residual=0.895 pixel

CPU time=78.57 s

RMS residual=0.895 pixel

CPU time=30.50 s
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Table 1 lists the image alignment results using the L-M 
method and compares the differences when the initial value 
estimate procedure was and was not performed. As shown 
in the results, the RMS error was reduced to 0.653 from 
IMOD S/W’s 0.839, but it took slightly longer to compute. 
The improved L-M method took less time to compute than 
the regular L-M method, but the difference was very small 
because there were a small number of unknown variables. 
For the L-M method, the RMS error was smaller than IMOD 
because of the algorithm characteristics and convergence 
conditions. The image alignment results were almost the 
same.
As noted above, the disadvantage of IMOD S/W is that it 
requires the markers to exist in all images. The results of 
the inversion performed on all of the selected points were 
considered to verify the efficiency of the inversion method 
used in this research.
All 30 of the marker categories were selected; all of more than 
2,900 marker coordinates selected from the entire image were 
used in the L-M method. Table 2 lists the inversion results. 
The results show that the RMS error was slightly higher than 
the case of using six markers, as shown in Table 1, and it took 
fairly long to compute. Compared to the basic L-M method, 
the initial value improved the L-M method’s convergence 
speed by 2.5 times.

Comparison of Tomography Results
We then compared the image alignment results of using only 
the six markers existing in all of the images, as in IMOD S/
W, and using all of the 30 markers randomly present in the 
images.
One way to determine the accuracy of image alignment is 
to overlap each aligned image and then observe changes in 
prominent markers. If the images are aligned, the markers 
on the overlapped images move parallel along the x-axis 
(i.e., the y-value remains the same). However, it is difficult 

to use this method because the markers are not clearly 
distinct in the TEM images (Fig. 4) used in the experiment. 
To solve this problem, points were artificially added onto the 
markers’ coordinates, which were selected among all images, 
to distinguish them from each other; the aligned images 
were then overlapped. Fig. 6 shows the overlapped images 
to compare the results of using only six markers and that of 
using all 30 markers.
Fig. 6A and B show the results of alignment using 6 and 30 
markers, respectively. In both cases, alignment was successfully 
achieved. However, there is no clear difference between them. 
For a more detailed comparison, the coordinates of the points 

Fig. 6. Overlapped images of aligned tilt 
series (A) using only six markers and (B) 
using all markers. More horizontal marker 
trajectories mean better results.

Fig. 7. Plots of the marker positions 18, 20, 28, and 29 in Fig. 6 (A) using 
only six markers and (B) using all markers. Vertical variations are 
exaggerated three times for display.
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aligned on the top part of Fig. 6 were drawn into symbols 
shown in Fig. 7. To make the comparison more convenient, 
the change in y-axis was exaggerated threefold. In Fig. 7, the 
changes in markers 18, 28, and 29 showed better results when 
30 markers were used. Marker 20 showed better results when 
six markers were used. This may be because marker 20 was 
the one directly used when the six-marker alignment was 
performed.
To determine the influence of the two-image alignment 
results on tomography, tomography using the filtered back-
projection method was performed on each aligned image. 
Fig. 8 shows the extracted the x-y section from each final 
tomogram to compare the results. In Fig. 8, the results look 
similar; however, the tomogram obtained using 30 markers 
(Fig. 8B) shows an improved and clearer image than the 
section obtained using six markers (Fig. 8A), as highlighted by 
a circle.
Very precise image alignment is required to obtain a higher-
resolution tomography result. The improved L-M method 
proposed above makes it possible to effectively determine the 
precise image alignment. The approach proposed in this study 
would be very useful when it is difficult to discriminate the 

markers, especially when tomography is to be applied to TEM 
images with thick samples and in the presence of noise.

SUMMARY

We proposed a new model formula using the L-M method 
and an initial valuable selection procedure to improve the 
efficiency of image alignment, which is an essential stage in 
electron tomography. The conclusions obtained from tests on 
geopolymer TEM images to verify the performance can be 
summarized as follows:
1. The newly proposed model formula and the minimizing 

method have the advantages of using all of the markers 
selected from the random images and find a stable solution 
to inversion.

2. The newly proposed initial value selection method greatly 
reduces the computation time of the original L-M method.

3. The image alignment method proposed in this paper is 
useful for the cases where the sample is thick or it is difficult 
to select all of markers in the entire image due to significant 
noise.

Fig. 8. Comparison of tomographic recons-
tructions in the two cases. Each z-slice is 
from the tomograms (A) using six markers 
and (B) using 30 markers. Circles highlight 
the improvement in the results. 
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