• Title/Summary/Keyword: TiO2 nanotube

Search Result 143, Processing Time 0.024 seconds

Effect of Hydrothermal Reaction Conditions on Piezoelectric Output Performance of One Dimensional BaTiO3 Nanotube Arrays (1차원 BaTiO3 나노튜브 어레이의 압전발전성능에 수열합성 반응조건이 미치는 영향)

  • Lee, Jae Hoon;Hyeon, Dong Yeol;Heo, Dong Hun;Park, Kwi-Il
    • Journal of Powder Materials
    • /
    • v.28 no.2
    • /
    • pp.127-133
    • /
    • 2021
  • One-dimensional (1D) piezoelectric nanostructures are attractive candidates for energy generation because of their excellent piezoelectric properties attributed to their high aspect ratios and large surface areas. Vertically grown BaTiO3 nanotube (NT) arrays on conducting substrates are intensively studied because they can be easily synthesized with excellent uniformity and anisotropic orientation. In this study, we demonstrate the synthesis of 1D BaTiO3 NT arrays on a conductive Ti substrate by electrochemical anodization and sequential hydrothermal reactions. Subsequently, we explore the effect of hydrothermal reaction conditions on the piezoelectric energy conversion efficiency of the BaTiO3 NT arrays. Vertically aligned TiO2 NT arrays, which act as the initial template, are converted into BaTiO3 NT arrays using hydrothermal reaction with various concentrations of the Ba source and reaction times. To validate the electrical output performance of the BaTiO3 NT arrays, we measure the electricity generated from each NT array packaged with a conductive metal foil and epoxy under mechanical pushings. The generated output voltage signals from the BaTiO3 NT arrays increase with increasing concentration of the Ba source and reaction time. These results provide a new strategy for fabricating advanced 1D piezoelectric nanostructures by demonstrating the correlation between hydrothermal reaction conditions and piezoelectric output performance.

The characteristics of dye-sensitized solar cells using carbon nanotube in working and counter electrodes (작업전극과 상대전극에 탄소나노튜브를 이용한 염료감응 태양전지의 특성연구)

  • Kim, Bora;Song, Suil;Lee, Hak Soo;Cho, Namjun
    • Analytical Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.308-313
    • /
    • 2014
  • The effect of electrochemical characteristics of dye-sensitized solar cells (DSSC) upon employing multi-wall carbon nanotube (MWCNT) on both working electrode and counter electrode were examined with using EIS, J-V curves and UV-Vis absorption spectrometry. When 0.1 wt% of MWCNT was employed in the $TiO_2$-MWCNT composit on working electrode, the energy conversion efficiency increased about 12.5% compared to the $TiO_2$ only working electrode. The higher light conversion efficiency may attribut to the high electrical conductivity of MWCNT in $TiO_2$-MWCNT composite which improves the electron transport in the working electrode. However, higher amount of MWCNT than 0.1 wt% in the $TiO_2$-MWCNT composite decreases the light conversion efficiency, which is mainly ascribed to the decreased transmittance of light by MWCNT and to the decreased adsorption of dye onto $TiO_2$. The MWCNT employed counter electrode exhibited much lower light conversion efficiency of DSSC than the Pt-counter electrode, while the MWCNT-Pt counter electrode showed similar in light conversion efficiency to that of Pt-counter electrode.

Preparation of Ni Nanoparticles-TiO2 Nanotube Arrays Composite and Its Application for Electrochemical Capacitor

  • He, Huichao;Zhang, Yunhuai;Xiao, Peng;Yang, Yannan;Lou, Qing;Yang, Fei
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.5
    • /
    • pp.1613-1616
    • /
    • 2012
  • Ni nanoparticles-$TiO_2$ nanotube arrays (Ni/$TiO_2NTs$) composites were prepared by pulsed electrodeposition method and subsequently characterized by means of field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDX). The FESEM results showed that highly dispersed Ni nanoparticles were not only loaded on the top of the $TiO_2NTs$ but also within the tubular structure, and the particle size of Ni prepared at different current amplitude (100, 200 and 300 $mA{\cdot}cm^{-2}$) was in the range of 15 to 70 nm. The electrochemical studies indicated that Ni nanoparticles loaded on the highly ordered $TiO_2NTs$ are readily accessible for electrochemical reactions, which improve the efficiency of the Ni nanoparticles and $TiO_2NTs$. A maximum specific capacitance (27.3 $mF.cm^{-2}$) was obtained on the Ni/$TiO_2NTs$ composite electrode that prepared at a current of 200 $mA.cm^{-2}$, and the electrode also exhibited excellent electrochemical stability.

Quantitative Comparison of the Photocatalytic Efficiency of TiO2 Nanotube Film and TiO2 Powder

  • Jang, Jun-Won;Park, Sung Jik;Park, Jae-Woo
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.2
    • /
    • pp.8-14
    • /
    • 2016
  • We compared the plausible reaction mechanism and quantitative efficiency of highly self-organized TiO2 nanotube (ntTiO2) film with TiO2 powder. Film was fabricated by electrochemical potentiostatic anodization of titanium thin film in an ethylene-glycol electrolyte solution containing 0.3 wt% NH4F and 2 vol% deionized water. Nanotubes with a pore size of 80-100 nm were formed by anodization at 60 V for 3 h. Humic acid (HA) was degraded through photocatalytic degradation using the ntTiO2 film. Pseudo first-order rate constants for 0.3 g of ntTiO2, 0.3 g TiO2 powder, and 1 g TiO2 powder were 0.081 min−1, 0.003 min−1, and 0.044 min−1, respectively. HA adsorption on the ntTiO2 film was minimal while adsorption on the TiO2 powder was about 20% based on thermogravimetric analysis. Approximately five-fold more normalized OH radicals were generated by the ntTiO2 film than the TiO2 powder. These quantitative findings explain why ntTiO2 film showed superior photocatalytic performance to TiO2 powder.

Precalcification Treatment of $TiO_2$ Nanotube on Ti-6Al-4V Alloy (Ti-6Al-4V 합금 표면에 생성된 $TiO_2$ 나노튜브의 전석회화 처리)

  • Kim, Si-Jung;Park, Ji-Man;Bae, Tae-Sung;Park, Eun-Jin
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.1
    • /
    • pp.39-45
    • /
    • 2009
  • Statement of problem: Recently precalcification treatment has been studied to shorten the period of the implant. Purpose: This study was performed to evaluate the effect of precalcification treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy. Material and methods: Specimens of $20{\times}10{\times}2\;mm$ in dimensions were polished sequentially from #220 to #1000 SiC paper, ultrasonically washed with acetone and distilled water for 5 min, and dried in an oven at $50^{\circ}C$ for 24 hours. The nanotubular layer was processed by electrochemical anodic oxidation in electrolytes containing 0.5 M $Na_2SO_4$ and 1.0 wt% NaF. Anodization was carried out using a regulated DC power supply (Kwangduck FA, Korea) at a potential of 20 V and current density of $30\;㎃/cm_2$ for 2 hours. Specimens were heat-treated at $600^{\circ}C$ for 2 hours to crystallize the amorphous $TiO_2$ nanotubes, and precalcified by soaking in $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. To evaluate the bioactivity of the precalcified $TiO_2$ nanotube layer, hydroxyapatite formation was investigated in a Hanks' balanced salts solution with pH 7.4 at $36.5^{\circ}C$ for 2 weeks. Results: Vertically oriented amorphous $TiO_2$ nanotubes of diameters 48.0 - 65.0 ㎚ were fabricated by anodizing treatment at 20 V for 2 hours in an 0.5 M $Na_2SO_4$ and 1.0 NaF solution. $TiO_2$ nanotubes were composed with strong anatase peak with presence of rutile peak after heat treatment at $600^{\circ}C$. The surface reactivity of $TiO_2$ nanotubes in SBF solution was enhanced by precalcification treatment in 0.5 M $Na_2HPO_4$ solution for 24 hours and then in saturated $Ca(OH)_2$ solution for 5 hours. The immersion in Hank's solution for 2 weeks showed that the intensity of $TiO_2$ rutile peak increased but the surface reactivity decreased by heat treatment at $600^{\circ}C$. Conclusion: This study shows that the precalcified treatment of $TiO_2$ Nanotube formed on Ti-6Al-4V Alloy enhances the surface reactivity.

Fabrication of Photoelectrochromic Devices Composed of Anodized TiO2 and WO3 Nanostructures (양극산화된 TiO2 및 WO3 나노구조체로 구성된 광전기변색 소자 제작)

  • Lee, Sanghoon;Cha, Hyeongcheol;Nah, Yoon-Chae
    • Journal of Powder Materials
    • /
    • v.22 no.5
    • /
    • pp.326-330
    • /
    • 2015
  • In this study, we demonstrate the photoelectrochromic devices composed of $TiO_2$ and $WO_3$ nanostructures prepared by anodization method. The morphology and the crystal structure of anodized $TiO_2$ nanotubes and $WO_3$ nanoporous layers are investigated by SEM and XRD. To fabricate a transparent photoelectrode on FTO substrate, a $TiO_2$ nanotube membrane, which has been detached from Ti substrate, is transferred to FTO substrate and annealed at $450^{\circ}C$ for 1 hr. The photoelectrode of $TiO_2$ nanotube and the counter electrode of $WO_3$ nanoporous layer are assembled and the inner space is filled with a liquid electrolyte containing 0.5 M LiI and 5 mM $I_2$ as a redox mediator. The properties of the photoelectrochromic devices is investigated and Pt-$WO_3$ electrode system shows better electrochromic performance compared to $WO_3$ electrode.

Corrosion Characteristics of Nanotube Surface Formed on the Ti-29Nb-xZr Alloy by Anodization Treatment (Ti-29Nb-xZr합금의 양극산화처리에 의해 형성된 나노튜브표면의 부식특성)

  • Jeong, Yong-Hun;Choe, Han-Cheol;Go, Yeong-Mu
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2009.05a
    • /
    • pp.164-164
    • /
    • 2009
  • 저탄성 계수를 갖는 Ti-29Nb-x(3, 5, 7, 10, 15)Zr 합금을 제조하여 양극산화 방법을 통해 표면에 nanotube를 형성한 후 0.9% NaCl 용액에서 부식특성을 관찰하였다. 합금 표면에 형성된 안정된 $TiO_2$ nanotube가 내식성 향상에 영향을 주었음을 알 수 있었다.

  • PDF

Principle of Anodic TiO2 Nanotube Formations (양극산화를 이용한 산화 타이타늄 나노 튜브 구조 형성 원리)

  • Lee, Kiyoung
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.601-606
    • /
    • 2017
  • One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on $TiO_2$ nanotubes have been widely carried out with increasing interests in $TiO_2$, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of $TiO_2$ nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of $TiO_2$ nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of $TiO_2$ nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of $TiO_2$ nanotubes formed through the anodic oxidation in the future.

Photo-catalytic Activity of CNT-TiO2 Nano Complex Prepared from Titanium Oxysulfate and Carbon Nanotube by Hydrosis (황산티타늄과 탄소나노튜브로부터 가수분해로 제조된 CNT-TiO2 나노복합체의 광촉매활성)

  • Kim, Sang Jin;Jung, Min-Jung;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.58-62
    • /
    • 2010
  • CNT-$TiO_{2}$ nano complexes were prepared from $TiOSO_4$ and multi-walled carbon nanotube (MWCNT) by hydrolysis. The CNTs were dispersed uniformly with anatase $TiO_{2}$ in the prepared $TiO_{2}$-CNT complexes. The increasing MWCNT ratio leads to increased crystalline carbon and O/Ti ratio. The decomposition degree of methylene blue was experienced according to UV radiation time for study adsorption and photocatalytic activity. The samples having high MWCNT ratio show high adsorption and photodegradation. The high specific surface area, functional group having oxygen, low band gap energy, high electric conductivity, high volume to surface ratio, uniform structure and properties of MWCNT assist photocatalytic activity of CNT-$TiO_{2}$ complex.

Fabrication of Flexible Solid-state Dye-sensitized $TiO_2$ Nanotube Solar Cell Using UV-curable NOA

  • Park, Ik-Jae;Park, Sang-Baek;Kim, Ju-Seong;Jin, Gyeong-Seok;Hong, Guk-Seon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.396-396
    • /
    • 2012
  • $TiO_2$ anatase nanotube arrays (NTAs) were grown by electrochemical anodization and followed annealing of Ti foil. Ethylene glycol/$NH_4F$-based organic electrolyte was used for electrolyte solution and using second anodization process to obtain free-standing NTAs. After obtaining NTAs, ITO film was deposited by sputtering process on bottom of NTAs. UV-curable NOA was used for attach free-standing NTAs on flexible plastic substrate (PEN). Solid state electrolyte (spiro-OMeTAD) was coated via spin-coating method on top of attached NTAs. Ag was deposited as a counter electrode. Under AM 1.5 simulated sunlight, optical characteristics of devices were investigated. In order to use flexible polymer substrate, processes have to be conducted at low temperature. In case of $TiO_2$ nano particles (NPs), however, crystallization of NPs at high temperature above $450^{\circ}C$ is required. Because NTAs were conducted high temperature annealing process before NTAs transfer to PEN, it is favorable for using PEN as flexible substrate. Fabricated flexible solid-state DSSCs make possible the preventing of liquid electrolyte corrosion and leakage, various application.

  • PDF