Browse > Article
http://dx.doi.org/10.14478/ace.2017.1011

Principle of Anodic TiO2 Nanotube Formations  

Lee, Kiyoung (School of Nano & Materials Science and Engineering, Kyungpook National University)
Publication Information
Applied Chemistry for Engineering / v.28, no.6, 2017 , pp. 601-606 More about this Journal
Abstract
One-dimensional nanostructured metal oxide can be formed through an anodic oxidation, which is a typical technique of metal surface treatment. Studies on $TiO_2$ nanotubes have been widely carried out with increasing interests in $TiO_2$, which has an excellent functionality among various metal oxides. The present article reviews the principles of formation of $TiO_2$ nanotubes, which have been studied so far. In particular, the article discussed the equilibrium relationship between the oxide formation and etching, which is a key parameter of $TiO_2$ nanotube growth, and the formation of the porous structure. Furthermore, morphological considerations of $TiO_2$ nanotubes according to electrolyte conditions will be explained to the researchers who will study the application of $TiO_2$ nanotubes formed through the anodic oxidation in the future.
Keywords
anodization; $TiO_2$; nanotubes; metal oxide; anodic nanostructures;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Guntherschulze and H. Betz, Die bewegung der ionengitter von isolatoren bei extremen elektrischen Feldstarken, Z. Phys., 92, 367 (1934).   DOI
2 K. R. Hebert, S. Albu, I. Paramasivam, and P. Schmuki, Morphological instability leading to formation of porous anodic oxide films, Nat. Mater., 11, 162 (2012).   DOI
3 K. Lee, J. Kim, H. Kim, Y. Lee, Y. Tak, D. Kim, and P. Schmuki, Effect of electrolyte conductivity on the formation of a $TiO_2$ for a dye-sensitized solar cell, J. Korean Phys. Soc., 54, 1027 (2009).   DOI
4 J. F. Vanhumbeeck and J. Proost, Electrochemical processing of ultrathin metallic oxides featuring in-situ monitoring of growth stress transitions, 209th ECS Meeting, May 7-12, Denver, USA (2006).
5 J. F. Vanhumbeeck and J. Proost, On the contribution of electrostriction to charge-induced stresses in anodic oxide films, Electrochim. Acta, 53, 6165 (2008).   DOI
6 S. Ono, M. Saito, and H. Asoh, Self-ordering of anodic porous alumina formed in organic acid electrolytes, Electrochim. Acta, 51, 827 (2005).   DOI
7 S. J. Garcia-Vergara, P. Skeldon, G. E. Thompson, and H. Habazaki, A flow model of porous anodic film growth on aluminium, Electrochimica Acta, 52, 681 (2006).   DOI
8 S. P. Albu, P. Roy, S. Virtanen, and P. Schmuki, Self-organized $TiO_2$ nanotube arrays: Critical effects on morphology and growth, Isr. J. Chem., 50, 453 (2010).   DOI
9 H. Habazaki, K. Fushimi, K. Shimizu, P. Skeldon, and G. E. Thompson, Fast migration of fluoride ions in growing anodic titanium oxide, Electrochem. Commun., 9, 1222 (2007).   DOI
10 S. Berger, S. P. Albu, F. Schmidt-Stein, H. Hildebrand, P. Schmuki, J. S. Hammond, D. F. Paul, and S. Reichlmaier, The origin for tubular growth of $TiO_2$ nanotubes: A fluoride rich layer between tube-walls, Surf. Sci., 605, L57 (2011).   DOI
11 W. Wei, S. Berger, C. Hauser, K. Meyer, M. Yang, and P. Schmuki, Transition of $TiO_2$ nanotubes to nanopores for electrolytes with very low water contents, Electrochem. Commun., 12, 1184 (2010).   DOI
12 J. Macak, H. Tsuchiya, and P. Schmuki, High-aspect-ratio $TiO_2$ nanotubes by anodization of titanium, Angew. Chem. Int. Ed., 44, 2100 (2005)   DOI
13 J. Macak, H. Tsuchiya, L. Taveira, S. Aldabergerova, and P. Schmuki, Smooth anodic $TiO_2$ nanotubes, Angew. Chem. Int. Ed., 44, 7463 (2005).   DOI
14 H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Fabrication and characterization of smooth high aspect ratio zirconia nanotubes, Chem. Phys. Lett., 410, 188 (2005).   DOI
15 H. Tsuchiya, J. M. Macak, L. Taveira, and P. Schmuki, Formation of self-organized zirconia nanostructure, ECS Trans., 1, 351 (2006).
16 S. Berger, F. Jakubka, and P. Schmuki, Formation of hexagonally ordered nanoporous anodic zirconia, Electrochem. Commun., 10, 1916 (2008).   DOI
17 H. A. El-Sayed and V. I. Birss, Controlled interconversion of nanoarray of Ta dimples and high aspect ratio Ta oxide nanotubes, Nano Lett., 9, 1350 (2009).   DOI
18 H. Tsuchiya and P. Schmuki, Self-organized high aspect ratio porous hafnium oxide prepared by electrochemical anodization, Electrochem. Commun., 7, 49 (2005).   DOI
19 I. Sieber, B. Kannan, and P. Schmuki, Self-assembled porous tantalum oxide prepared in H2SO4/HF electrolytes, Electrochem. Solid-State Lett., 8, J10 (2005).   DOI
20 I. Sieber and P. Schmuki, Porous tantalum oxide prepared by electrochemical anodic oxidation, J. Electrochem. Soc., 152, C639 (2005).   DOI
21 S. P. Albu, A. Ghicov, and P. Schmuki, High aspect ratio, self-ordered iron oxide nanopores formed by anodization of Fe in ethylene glycol/NH4F electrolytes, Phys. Status Solidi Rapid Res. Lett., 3, 64 (2009).   DOI
22 O. Jessensky, F. Müller, and U. Gosele, Self-organized formation of hexagonal pore arrays in anodic alumina, Appl. Phys. Lett., 72, 1173 (1998).   DOI
23 S. Kim, J. Lim, and J. Choi, Preparation of polymer nonotubes/ nanowires by using inorganic porous templates, Polym. Sci. Technol., 17, 742 (2006).
24 H. Masuda and K. Fukuda, Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumi-na, Science, 268, 1466 (1995).   DOI
25 H. Masuda, F. Hasegawa, and S. Ono, Self ordering of cell arrangement of anodic porous alumina formed in sulfuric acid solution, J. Electrochem. Soc., 144, L127 (1997).   DOI
26 W. Wei, K. Lee, S. Shaw, and P. Schmuki, Anodic formation of high aspect ratio, self-ordered $Nb_2O_5$ nanotubes, Chem. Commun., 48, 4244 (2012).   DOI
27 A.-P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gosele, Hexagonal pore arrays with a 50-420 nm interpore distance formed by self-organization in anodic alumina, J. Appl. Phys., 84, 6023 (1998).   DOI
28 T. D. Burleigh, P. Schmuki, and S. Virtanen, Properties of the nanoporous anodic oxide electrochemically grown on steel in hot 50% NaOH, J. Electrochem. Soc., 156, C45 (2009).   DOI
29 S. K. Mohapatra, S. E. John, S. Banerjee, and M. Misra, Water photooxidation by smooth and ultrathin ${\alpha}$-$Fe_2O_3$ nanotube, Arrays Chem. Mater., 21, 3048 (2009).
30 I. Sieber, H. Hildebrand, A. Friedrich, and P. Schmuki, Formation of self-organized niobium porous oxide on niobium, Electrochem. Commun., 7, 97 (2005).   DOI
31 C.-Y. Lee, K. Lee, and P. Schmuki, Anodic formation of self-organized cobalt oxide nanoporous layers, Angew. Chem. Int. Ed., 52, 2077 (2013).   DOI
32 Y. Yang, S. P. Albu, D. Kim, and P. Schmuki, Enabling the anodic growth of highly ordered $V_2O_5$ nanoporous/nanotubular structures, Angew. Chem. Int. Ed., 50, 9071 (2011).   DOI
33 R. Hahn, J. M. Macak, and P. Schmuki, Rapid anodic growth of $TiO_2$ and $WO_3$ nanotubes in fluoride free electrolytes, Electorchem. Commun., 9, 947 (2007).   DOI
34 W. Wei, R. Kirchgeorg, K. Lee, S. So, and P. Schmuki, Nitrates: A new class of electrolytes for the rapid anodic growth of self-ordered oxide layers on Ti and Ta, Phys. Status Solidi Rapid Res. Lett., 5, 394 (2011).   DOI
35 D. Kim, K. Lee, P. Roy, B.I. Birajdar, E. Spiecker, and S. Schmuki, Formation of a non-thickness-limited titanium dioxide and its use in dye-sensitized solar cells, Angew. Chem. Int. Ed., 48, 9326 (2009).   DOI
36 K. Lee, D. Kim, P. Roy, I. Paramasivam, B. I. Birajdar, E. Spiecker, and P. Schmuki, Anodic formation of thick anatase $TiO_2$ mesosponge layers for high-efficiency Photocatalysis, J. Am. Chem. Soc., 132, 1478 (2010).   DOI
37 V. Zwilling, E. Darque-Ceretti, A. Boutry-Forveille, D. David, M. Y. Perrin, and M. Aucouturier, Structure and physicochemistry of anodic oxide films on titanium and TA6V alloy, Surf. Interface Anal., 27, 629 (1999).   DOI
38 A. Fujishima, X. Zhang, and D. A. Tryk, $TiO_2$ photocatalysis and related surface phenomena, Surf. Sci. Rep., 63, 515 (2008).   DOI
39 B. O'Regan and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal $TiO_2$ films, Nature, 353, 737 (1991).   DOI
40 P. Roy, D. Kim, K. Lee, E. Spiecker, and P. Schmuki, $TiO_2$ nanotubes and their application in dye-sensitized solar cells, Nanoscale, 2, 45 (2010).   DOI
41 M. Assefpour-Dezfuly, C. Vlachos, and E. H. Andrews, Oxide morphology and adhesive bonding on titanium surfaces, J. Mater. Sci., 19, 3626 (1984).   DOI
42 D. Kowalski, D. Kim, and P. Schmuki, $TiO_2$ nanotubes, nanochannels and mesosponge: Self-organized formation and applications, Nano Today, 8, 235 (2013).   DOI
43 R. Beranek, H. Hildebrand, and P. Schmuki, Electrochem. Self-organized porous titanium oxide prepared in $H_{2}SO_{4}/HF$ electrolytes, Solid-State Lett., 6, B12 (2003).   DOI
44 D. Gong, C. A. Grimes, O. K. Varghese, W. C. Hu, R. S. Singh, Z. Chen, and E. C. Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation, J. Mater. Res., 16, 3331 (2001).   DOI
45 P. Roy, S. Berger, and P. Schmuki, $TiO_2$ nanotubes: Synthesis and applications, Angew. Chem. Int. Ed., 50, 2904 (2011).   DOI
46 K. Lee, A. Mazare, and P. Schmuki, One-dimensional titanium dioxide nanomaterials: Nanotubes, Chem. Rev., 114, 9385 (2014).   DOI
47 A. Fujishima and K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature, 238, 37 (1972).   DOI
48 K. Lee, Understanding the formation of anodic nanoporous $TiO_2$ structures in a hot glycerol/phosphate electrolyte, J. Electrochem. Soc., 164, E5 (2017).   DOI
49 K. Lee, D. Kim, and P. Schmuki, Highly self-ordered $TiO_2$ structures by in a hot glycerol electrolyte, Chem. Commun., 47, 5789 (2011).   DOI