• Title/Summary/Keyword: TiO-N박막

Search Result 263, Processing Time 0.03 seconds

Electrical Properties of SCT Ceramic Thin Film with Top Electrode (상부전극에 따른 SCT 세라믹 박막의 전기적 특성)

  • Cho, C.N.;Kim, J.S.;Shin, C.G.;Choi, W.S.;Kim, C.H.;Park, Y.P.;Yoo, Y.G.;Lee, J.U.
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1501-1503
    • /
    • 1999
  • The $(Sr_{0.85}Ca_{0.15})TiO_3$(SCT) thin films are deposited on Pt-coated electrode$(Pt/TiO_2/SiO_2/Si)$ using RF sputtering method. Ag, Cu, Al, Pt films for the formation of top eletrode were doposited on SCT thin films by thermal evaporator and sputtering. The effects of top electodes have be studied on SCT samples with a variety of top electrode materials.

  • PDF

Influence of Substrate Temperature of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 기판온도 영향)

  • Kim Jin-Sa;Oh Yong-Cheol;Cho Choon-Nam;Lee Dong-Gyu;Shin Cheol-Gi;Kim Chung-Hyeok
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.53 no.10
    • /
    • pp.505-509
    • /
    • 2004
  • The (Sr/sub 0.9/Ca/sub 0.1/)TiO₃(SCT) thin films are deposited on Pt-coated electrode(Pt/TiN/SiO₂/Si) using RF sputtering method at various substrate temperature. The optimum conditions of RF power and Ar/O₂ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin film was about 18.75[Å/min]. The crystallinity of SCT thin films were increased with increase of substrate temperature in the temperature range of 100~500[℃]. The dielectric constant of SCT thin films were increased with the increase of substrate temperature, and changed almost linearly in temperature ranges of -80~+90[℃]. The current-voltage characteristics of SCT thin films showed the increasing leakage current as the substrate temperature increases.

Fabrication and Properties of SCT Thin Film by RF Sputtering Method (RF 스퍼터링법에 의한 SCT 박막의 제조 및 특성)

  • 김진사;김충혁
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.52 no.10
    • /
    • pp.436-440
    • /
    • 2003
  • The (S $r_{0.85}$C $a_{0.15}$)Ti $O_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/ $SiO_2$/Si) using RF sputtering method according to the deposition condition. The optimum conditions of RF power and Ar/ $O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about 18.75[$\AA$/min] at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The capacitance characteristics had a stable value within $\pm$4[%]. The drastic decrease of dielectric constant and increase of dielectric loss in SCT thin films were observed above 200[kHz]. SCT thin films used in this study showed the phenomena of dielectric relaxation with the increase of frequency.ncy.

Structural Properties of SCT Thin Film with Deposition and Annealing Temperature (증착 및 열처리온도에 따른 SCT 박막의 구조적인 특성)

  • Kim, Jin-Sa
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.3
    • /
    • pp.41-45
    • /
    • 2007
  • The (SrCa)$TiO_3$(SCT) thin films were deposited on Pt-coated electrode(Pt/TiN/$SiO_2$/Si) using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and Ar/$O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.081 in A/B ratio). The maximum dielectric constant of SCT thin film was obtained by annealing at $600[^{\circ}C]$.

  • PDF

Microstructure and Structural Properties of SCT Thin Film (SCT 박막의 미세구조 및 구조적인 특성)

  • Kim, Jin-Sa;Oh, Yong-Cheol
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.12
    • /
    • pp.576-580
    • /
    • 2006
  • The $(Sr_{0.85}Ca_{0.15})TiO_3(SCT)$ thin films were deposited on Pt-coated electrode $(Pt/TiN/SiO_2/Si)$ using RF sputtering method according to the deposition condition. The crystallinity of SCT thin films were increased with increase of deposition temperature in the temperature range of $100{\sim}500[^{\circ}C]$. The optimum conditions of RF power and $Ar/O_2$ ratio were 140[W] and 80/20, respectively. Deposition rate of SCT thin films was about $18.75[{\AA}/min]$ at the optimum condition. The composition of SCT thin films deposited on Si substrate is close to stoichiometry (1.102 in A/B ratio). The maximum dielectric constant of SCT thin film as obtained by annealing at $600^{\circ}C$.

Top Electrodes Properties of SCT Thin Films (SCT 박막의 상부전극 특성)

  • 조춘남;김진사;전장배;유영각;김충혁
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1999.11a
    • /
    • pp.240-243
    • /
    • 1999
  • (Sr$\sub$0.85/Ca$\sub$0.15/)TiO$_3$thin films were deposited on Pt-coated TiO$_2$/SiO$_2$/Si wafer by the rf sputtering method. Experiments were conducted to investigate the electrical properties of SCT thin films with various top electrode. C-F and C-V measurements show that SCT thin films annnealed at 600$^{\circ}C$ have a larger capacitance than SCT thin films deposited at 400$^{\circ}C$ , and there is nearly no difference between top electrodes. I-V measurement show that Pt top electrode have a good leakage current density of < 10nA/$\textrm{cm}^2$,. making them suitable for DRAM application.

  • PDF

Thermal stability of surface modified Ni-Cr-alloys in molten FLiNaK salt (표면처리된 Ni-Cr계 합금의 FLiNaK 용융염 하에서의 고온 안정성)

  • Kwang, Hyun Cho;Bang, Hyun;Lee, Tae Suk;Lee, Byeong Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.5
    • /
    • pp.227-232
    • /
    • 2012
  • Inconel 617 and Hastelloy X are the most promising candidate materials for the heat exchanger of next generation nuclear reactor. Surface coating and its effects on high temperature properties for the Inconel 617 and Hastelloy X under molten FLiNaK (LiF-NaF-KF) salt environment have been investigated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods of an arc discharge and a sputtering were applied, respectively. A study for the thermal stability of the surface modified Ni-Cr alloy substrates has been conducted. To evaluate the corrosion mechanism of Ni-Cr alloys in the molten salt, a ruptured Inconel pipe used for the molten salt transportation has been analyzed. The thermal properties of morphological and structural properties each sample were characterized before and after heat-treatment at $600^{\circ}C$ in molten FLiNaK salt. The results showed that the TiAlN and $Al_2O_3$ overlay coated specimens had the enhanced high temperature stability.

Characterization and Conversion Electron Mössbauer Spectroscopy of HoMn1-x-FexO3 Thin Films by Pulsed Laser Deposition (PLD를 이용한 HoMn1-x-FexO3 박막 제조 및 후방 산란형 뫼스바우어 분광 연구)

  • Choi, Dong-Hyeok;Shim, In-Bo;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.1
    • /
    • pp.18-21
    • /
    • 2007
  • The hexagonal $HoMn_{1-x}-Fe_xO_3$(x=0.00, 0.05) thin films were prepared using pulsed laser deposition(PLD) method on $Pt/Ti/SiO_2/Si$ substrate. The microstructure and magnetic properties have been studied by x-ray diffraction(XRD), atomic force microscopy (AFH), scanning electron microscope(SEM:), x-ray photoelectron spectroscopy(XPS), and conversion electron $M\"{o}ssbauer$ spectroscopy(CEMS). From the analysis of the x-ray diffraction patterns, the crystal structure for all films was found to be a hexagonal($P6_3cm$), which was preferentially grown along(110) direction. The lattice constant $c_0$ of the film with x=0.05 was close to that of single crystal, whereas lattice constant $a_0$ with respect to single crystal shows a slight decrease. This difference of lattice parameters between film and single crystal was caused by the lattice mismatch between the film and $Pt/Ti/SiO_2/Si$ substrate. Conversion electron $M\"{o}ssbauer$ spectrum of $HoMn_{0.95}Fe_{0.05}O_3$ thin film shows an asymmetry doublet absorption ratio at room temperature, which is due to the oriented direction of crystallographic domains. This is corresponding with analysis of x-ray diffraction. The quadrupole splitting(${\Delta}E_Q$) at room temperature is found to be $1.62{\pm}0.01mm/s$. This large ${\Delta}E_Q$ was caused by asymmetry environment surrounding Fe ion.

PIII&D(Plasma Immersion Ion Implantation & Deposition) 공정으로 제조된 인공 관절용 NbN 박막코팅층의 특성 평가

  • Park, Won-Ung;Choe, Jin-Yeong;Jeon, Jun-Hong;Im, Sang-Ho;Han, Seung-Hui
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.349-349
    • /
    • 2011
  • 인공관절은 노인성 질환이나 자가 면역질환, 신체적인 외상 등으로 인하여 발생하는 관절의 손상 부위를 대체하기 위해 고안된 관절의 인공 대용물이다. 인공 관절 중 인공 고관절의 경우 관절 운동을 하는 라이너(Liner)와 헤드(Head) 부분이 인공관절의 수명을 결정하게 되는데, 헤드 부분에 메탈소재와 라이너 부분에 고분자 소재를 사용하는 MOP(metal on polymer) 구조의 인공관절은 충격흡수의 장점이 있는 반면 wear debris에 의한 골용해로 인하여 관절이 느슨해지는 문제점이 발생하여 재 시술의 주요 원인이 되고 있다. 현재 인공관절의 수명을 늘리기 위해 DLC, ZrO, TiN 등의 높은 경도 값을 갖는 박막을 금속헤드 위에 증착하여 상대재인 인공관절용 고분자 소재의 마모량을 줄이고자 하는 연구가 활발하게 진행되고 있다. 따라서 본 연구에서는 PIII&D(Plasma Immersion Ion Implantation & Deposition)공정을 이용하여 Co-Cr-Mo 합금 소재에 질소 이온을 주입 한 후 NbN 박막을 증착하여 상대재인 초고분자량 폴리에틸렌(UHMWPE)의 마모량을 줄이고자 하였다. NbN 박막의 특성을 평가하기 위해 XRD, XPS, AFM 등의 분석을 수행하였으며, 상대재인 초고분자량 폴리에틸렌의 마모량을 측정하기 위해 Pin-on-disk tribometer를 이용하여 마모 실험을 진행하였다. 마모 실험 결과, NbN 박막을 단순 증착한 경우, 현재 인공관절용 헤드(Head) 소재로 가장 널리 사용되고 있는 Co-Cr-Mo 합금에 비하여, 상대재인 초고분자량 폴리에틸렌의 마모량을 약 20% 감소시키는 것을 알 수 있었다. 또한, Co-Cr-Mo 합금 소재에 질소 이온주입을 하여 표면을 개질한 후, NbN 박막을 증착한 경우, 마모량이 최대 50%까지 감소하는 것을 확인할 수 있었다.

  • PDF

High temperature properties of surface-modified Hastelloy X alloy (표면처리에 따른 Hastelloy X 합금의 고온물성)

  • Cho, Hyun;Lee, Byeong-Woo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.22 no.4
    • /
    • pp.183-189
    • /
    • 2012
  • Surface treatments and their effects on high temperature properties for the Hastelloy X, which is a promising candidate alloy for high temperature heat-transport system, have been evaluated. For TiAlN and $Al_2O_3$ overlay coatings, the two different PVD (physical vapor deposition) methods using an arc discharge and a sputtering, were applied, respectively. In addition, a different surface treatment method of the diffusion coating by a pack cementation of Al (aluminiding) was also adopted in this study. To achieve enhanced thermal oxidation resistance at $1000^{\circ}C$ by suppressing the inhomogeneous formation of thick $Cr_2O_3$ crust at the surface region, a study for the surface modification methods on the morphological and structural properties of Hastelloy X substrates has been conducted. The structural and compositional properties of each sample were characterized before and after heat-treatment at $1000^{\circ}C$ under air and He environment. The results showed that the Al diffusion coating showed the more enhanced high temperature properties than the overlay coatings such as the suppressed thick $Cr_2O_3$ crust formation and lower wear loss.