• Title/Summary/Keyword: TiAl Alloys

Search Result 335, Processing Time 0.028 seconds

Effect of Interlayer on TiN and CrN Thin Films of STS 420 Hybrid-Deposited by AlP and DC Magnetron Sputtering (AIP 와 스퍼터링으로 복합증착된 420 스테인리스강의 TiN과 CrN 박막에 미치는 중간층의 영향)

  • Choi, Woong-Sub;Kim, Hyun-Seung;Park, Burm-Su;Lee, Kyung-Ku;Lee, Doh-Jae;Lee, Kwang-Min
    • Korean Journal of Materials Research
    • /
    • v.17 no.5
    • /
    • pp.256-262
    • /
    • 2007
  • Effects of interlayer and the combination of different coating methods on the mechanical and corrosion behaviors of TiN and CrN coated on 420 stainless steel have been studied. STS 420 specimen were tempered at $300^{\circ}C$ for 1 hr in vacuum furnace. The TiN and CrN thin film with 2 ${\mu}m$ thickness were coated by arc ion plating and DC magnetron sputtering following the formation of interlayer for pure titanium and chromium with 0.2 ${\mu}m$ thickness. The microstructure and surface analysis of the specimen were conducted by using SEM, XRD and roughness tester. Mechanical properties such as hardness and adhesion also were examined. XRD patterns of TiN thin films showed that preferred TiN (111) orientation was observed. The peaks of CrN (111) and $Cr_2N$ (300) were only observed in CrN thin films deposited by arc ion plating. Both TiN and CrN deposited by arc ion plating had the higher adhesion and hardness compared to those formed by magnetron sputtering. The specimen of TiN and CrN on which interlayer deposited by magnetron sputtering and thin film deposited by arc ion plating had the highest adhesion with 22.2 N and 19.2 N. respectively. TiN and CrN samples shown the most noble corrosion potentials when the interlayers were deposited by using magnetron sputtering and the metal nitrides were deposited by using arc ion plating. The most noble corrosion potentials of TiN and CrN were found to be approximately -170 and -70 mV, respectively.

Relative Evaluation for Biocompatibility of Pure Titanium and Titanium Alloys using Histological and Enzymatic Methods (조직학과 효소활성 방법을 이용한 순 타이타늄과 타이타늄 합금의 상대적인 생체적합성 평가)

  • Yeom, Dong-Sun;Kim, Byung-Il;Lee, Yu-Mi;Lee, Eun-Jung;Yee, Sung-Tae;Seong, Chi-Nam;Seo, Kwon-Il;Cho, Hyun-Wook
    • Toxicological Research
    • /
    • v.23 no.4
    • /
    • pp.331-339
    • /
    • 2007
  • Titanium or titanium alloy is a widely used implant material according to its certified biocompatibility, sufficient strength and ready availability. The purpose of this study was to evaluate the relative biocompatibility of titanium and titanium alloy specimens (Ti-29Nb-13Ta, TiNb and Ti-6Al-4V, Ti64) using in vivo and in vitro methods. For in vivo experiment, the specimens were implanted in the abdominal subcutaneous region of female mice for 2 and 4 weeks. The reaction of connective tissue to specimens was evaluated histologically. The specimens were encapsulated by fibrous connective tissue consisting of fibroblast, fibrocyte and other cells including neutrophil, macrophage, giant multinucleated cell and unidentified cells. Some newly formed blood vessels were located in the fibrous capsule surrounding the implant. Cell types and the thickness of fibrous capsules were examined quantitatively. Most of cell types located in the fibrous capsule were fibroblasts and fibrocytes. The average thickness of fibrous capsules for the TiNb specimens was much thinner than that of the titanium alloy, Ti64. The thickness of the fibrous capsule around all titanium specimens decreased at 4 weeks compared to 2 weeks post-implantation. The biocompatibility of titanium and titanium alloy specimens were also investigated in in vitro method using alkaline phosphatase from MG-63 cells. Alkaline phosphatase activity of the TiNb specimen showed higher activity than the titanium alloy, Ti64. In conclusion, the TiNb alloy with thin capsule thickness in vivo and high alkaline phosphatase activity in vitro will be of considerable use in biomedical applications.

Additive Manufacturing Optimization of Directed Energy Deposition-Processed Ti-6Al-4V Alloy using Energy Density and Powder Deposition Density (에너지 밀도 및 분말 증착 밀도를 고려한 직접 에너지 증착법 기반 Ti-6Al-4V 합금의 적층공정 최적화)

  • Lee, Yukyeong;Kim, Eun Sung;Chun, Se-Ho;Seol, Jae Bok;Sung, Hyokyung;Oh, Jung Seok;Kim, Hyoung Seop;Lee, Taekyung;Nam, Tae-Hyun;Kim, Jung Gi
    • Journal of Powder Materials
    • /
    • v.28 no.6
    • /
    • pp.491-496
    • /
    • 2021
  • The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DED-processed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.

Failure Analysis of Ti alloy Screws in Fixing Fractured Spines (척추교정 티타늄 앵커나사 파단 손상원인 분석)

  • Choe, Byung Hak;Kim, Moon Kyu;Kim, Seong Eun;Shim, Yoon Im;Lee, Young Jin;Jeong, Hyo Tae;Choi, Won Yeol
    • Korean Journal of Metals and Materials
    • /
    • v.49 no.12
    • /
    • pp.983-988
    • /
    • 2011
  • Failure analyses of the screws in spinal fixation devices were carried out. The fractured screws were retrieved from a patient who had spinal surgery in the thoracic vertebrae from number 10 to 15. The failure occurred one month after the removal of the braces. Microstructures and fracture surfaces were examined by optical and scanning electron microscopy. The microstructures of the screws corresponded to annealed Ti-6Al-4V bar. However, in the vicinity of the screw surface, there was an insufficient number of fine precipitates. Fracture surfaces showed typical fatigue failure modes. Regarding the fact that no machining defects were detected, fatigue crack initiation might have been caused by the lack of precipitates near the screw surfaces. Only the fourth of five fixed screws was severely stress-concentrated by the action of the spinal bones, while the stress of the 4th screw was decreased to half of its acceptable level when the screw was supplemented by one more, which might have been fixed in the 6th vertebra under the 5th position by the switching of its position. The stress simulation was conducted by ANSYS with 3D CAD of PRO/E in order to understand the stress concentration behavior and to provide an effective spinal surgery guide.

Study on the control technique for the heat transportation system using metal hydride (수소저장합금을 이용한 열수송시스템 제어기술 연구)

  • Sim, K.S.;Kim, J.W.;Kim, J.D.;Myung, K.S.
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.11 no.1
    • /
    • pp.43-49
    • /
    • 2000
  • The heat transportation from a complex of industry to a rural area needs more efficient method because the distance between them is usually more than 10km. Conventional heat transportation using steam or hot water via pipe line has limits in transportation distance (about 3~5 km) because of the heat loss and frictional loss in the pipe line. Metal hydride can absorb or discharge hydrogen through exothermic or endothermic reaction. After releasing hydrogen from metal hydride by means of the waste heat from industry, we can transport this hydrogen to urban area via pipe line. In urban areas, other metal alloy reacts with this hydrogen to form metal hydride and produces heat for heating. Cool heat is also obtained if it is possible to use metal hydride with low reaction temperature. Therefore, metal hydride can be used as a media for transportation and storage of heat. $MmNi_{4.5}Al_{0.5}Zr_{0.003}$, $LaNi_5$, $Zr_{0.9}Ti_{0.1}Cr_{0.6}Fe_{1.4}$, $MmNi_{4.7}Al_{0.1}Fe_{0.1}V_{0.1}$ alloys were selected for this purpose and the properties of those metal hydrides were discussed. The design and control techniques were proposed and discussed for this heat transportation system using metal hydride.

  • PDF

Study of High Temperature of Inconel 740 Alloy in Air and Ar-0.2%SO2 Gas (대기 및 Ar-0.2%SO2가스에서 Inconel 740 합금의 고온부식 연구)

  • Lee, Dong Bok;Kim, Min Jung
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.2
    • /
    • pp.43-52
    • /
    • 2021
  • The Ni-based superalloy, Inconel 740, was corroded between 800 and 1100℃ for up to 100 hr in air and Ar-0.2%SO2 gas in order to study its corrosion behavior in air and sulfur/oxygen environment. It displayed relatively good corrosion resistance in both environment, because its corrosion was primarily dominated by not sulfidation but oxidation especially in Ar-0.2%SO2 gas. Such was attributed to the thermodynamic stability of oxides of alloying elements when compared to corresponding sulfides. The scales consisted primarily of Cr2O3, together with some NiAl2O4, MnCr2O4, NiCrMnO4, and rutile-TiO2. Sulfur from SO2 gas made scales prone to spallation, and thicker. It also widened the internal corrosion zone when compared to air. The corrosion resistance of IN740 was mainly indebted to the formation of protective Cr2O3-rich oxides, and suppression of the sulfide formation.

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere (리튬용융염계 산화성분위기에서 초합금의 고온 부식거동)

  • Cho Soo-Hang;Lim Jong-Ho;Chung Jun-Ho;Oh Seung-Chul;Seo Chung-Seok;Park Seoung-Won
    • Korean Journal of Materials Research
    • /
    • v.14 no.11
    • /
    • pp.813-820
    • /
    • 2004
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.

The Magnetic Properties of Fe-Hf-C Soft Magnetic Thin Films (Fe-Hf-C계 연자성 박막합금의 자기적 성질)

  • 최정옥;이정중;한석희;김희중;강일구
    • Journal of the Korean Magnetics Society
    • /
    • v.3 no.1
    • /
    • pp.23-28
    • /
    • 1993
  • Thin films of soft magnetic Fe-Hf-C alloys with nanoscale crystallites were investigated in this study. The films were fabricated by an RF diode magnetron sputtering apparatus and subsequently annealed in vacuum. The soft magnetic properties of the films were observed to differ depending on the different substrates such as Corning 7059, $CaTiO_3$ and $Al_2O_3-TiC$ with various underlayer(Cr, $SiO_2$) thickness. This results may be due to the interdiffusion between the substrate and the magnetic layer and/or between the underlayer and the magnetic layer, rather than the microstructural change such as grain size. The Fe-Hf-C films with high permeability up to 4000(at 1 MHz) and saturation magnetization up to 16 kG were obtained in the vicinity of phase boundary between the crystalline and amorphous state when the size of ${\alpha}-Fe$ grains is about 5 nm. And also the films were found to have thermal stability up to $600^{\circ}C$.

  • PDF

Corrosion Behavior of Si,Zn and Mn-doped Hydroxyapatite on the PEO-treated Surface

  • Park, Min-Gyu;Choe, Han-Cheol
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.78-78
    • /
    • 2017
  • Pure Titanium and alloy have been widely used in dental implants and orthopedics due to their excellent mechanical properties, biocompatibility and corrosion resistance. However, due to the biologically inactive nature of Ti metal implants, it cannot bind to the living bone immediately after transplantation into the body. In order to improve the bone bonding ability of titanium implants, many attempts have been made to alter the structure, composition and chemical properties of titanium surfaces, including the deposition of bioactive coatings. The PEO method has the advantages of short experiment time and low cost. These advantages have attracted attention recently. Recently, many metal ions such as silicon, magnesium, zinc, strontium, and manganese have received attention in this field due to their impact on bone regeneration. Silicon (Si) in particular has been found to be essential for normal bone and cartilage growth and development. Zinc (Zn) plays very important roles in bone formation and immune system regulation and promotes bone metabolism and growth. Manganese (Mn) is an essential trace metal found in all tissues and is required for normal amino acid, lipid, protein and carbohydrate metabolism. The objective of this work was research on the corrosion behavior of Si, Zn and Mn-doped hydroxyapatite on the PEO-treated surface. Anodized alloys was prepared at 270V~300V voltage in the solution containig Zn, Si, and Mn ions. Ion release test was carried out using potentidynamic and AC impedance method in 0.9% NaCl solution. The surface characteristics of PEO treated Ti-6Al-4V alloy were investigated using XRD, FE-SEM, AFM and EDS.

  • PDF

Corrosion Behavior of Ni-Base Superalloys in a Hot Molten Salt (고온 용융염계에서 Ni-Base 초합금의 부식거동)

  • Cho, Soo-Haeng;Kang, Dae-Seong;Hong, Sun-Seok;Hur, Jin-Mok;Lee, Han-Soo
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.9
    • /
    • pp.577-584
    • /
    • 2008
  • The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which results in a chemically aggressive environment that is too corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Inconel 713LC, Inconel MA 754, Nimonic 80A and Nimonic 90 in the molten salt $LiCl-Li_2O$ under an oxidizing atmosphere was investigated at $650^{\circ}C$ for 72~216 hrs. Inconel 713LC alloy showed the highest corrosion resistance among the examined alloys. Corrosion products of Inconel 713LC were $Cr_2O_3$, $NiCr_2O_4$ and NiO, and those of Inconel MA 754 were $Cr_2O_3$ and $Li_2Ni_8O_{10}$ while $Cr_2O_3$, $LiFeO_2$, $(Cr,Ti)_2O_3$ and $Li_2Ni_8O_{10}$ were produced from Nimonic 80A. Also, corrosion products of Nimonic 90 were found to be $Cr_2O_3$, $(Cr,Ti)_2O_3$, $LiAlO_2$ and $CoCr_2O_4$. Inconel 713LC showed local corrosion behavior and Inconel MA 754, Nimonic 80A, Nimonic 90 showed uniform corrosion behavior.