Browse > Article
http://dx.doi.org/10.3740/MRSK.2004.14.11.813

Hot Corrosion Behavior of Superalloys in Lithium Molten Salt under Oxidation Atmosphere  

Cho Soo-Hang (Korea Atomic Energy Research Institute)
Lim Jong-Ho (Korea Atomic Energy Research Institute)
Chung Jun-Ho (Korea Atomic Energy Research Institute)
Oh Seung-Chul (Korea Atomic Energy Research Institute)
Seo Chung-Seok (Korea Atomic Energy Research Institute)
Park Seoung-Won (Korea Atomic Energy Research Institute)
Publication Information
Korean Journal of Materials Research / v.14, no.11, 2004 , pp. 813-820 More about this Journal
Abstract
The electrolytic reduction of spent oxide fuel involves the liberation of oxygen in a molten LiCl electrolyte, which is a chemically aggressive environment that is very corrosive for typical structural materials. So, it is essential to choose the optimum material for the process equipment handling molten salt. In this study, corrosion behavior of Haynes 263, 75, and Inconel X-750, 718 in molten salt of $LiCl-Li_{2}O$ under oxidation atmosphere was investigated at $650^{\circ}C\;for\;72\sim360$ hours. At $3\;wt\%\;of\;Li_{2}O$, Haynes 263 alloy showed the highest corrosion resistance among the examined alloys, and up to $8\;wt\%\;of\;Li_{2}O$, Haynes 75 exhibited the highest corrosion resistance. Corrosion products were formed $Li(Ni,Co)O_2,\;LiNiO_2\;and\;LiTiO_2\;and\;Cr_{2}O_3$ on Haynes 263, $Cr_{2}O_3,\;NiFe_{2}O_4,\;LiNiO_2,\;Li_{2}NiFe_{2}O_4,\;Li_{2}Ni_{8}O_10$ and Ni on Haynes 75, $Cr_{2}O_3,\;(Al,Nb,Ti)O_2,\;NiFe_{2}O_4,\;and\;Li_{2}NiFe_{2}O_4$ on Inconel X-750 and $Cr_{2}O_3,\;NiFe_{2}O_4\;and\;CrNbO_4$ on Inconel 718, respectively. Haynes 263 showed local corrosion behavior and Haynes 75, Inconel X-750, 718 showed uniform corrosion behavior.
Keywords
molten salt corrosion; hot corrosion; molten salt;
Citations & Related Records
연도 인용수 순위
  • Reference
1 F. Colom and A. Bodalo, Corros. Sci., 12, 73 (1972)   DOI   ScienceOn
2 W. H. Smyrl and M. J. Blanckburn, Corrosion, 31, 370 (1972)
3 C. B. Gill, M. E. Staumanis and W. E. Schlechten, J. Electrochem. Soc., 102, 42 (1955)   DOI
4 A. Rahmel and H. J. Engell, Corrosion, 18, 320 (1969)
5 M. Spiegel, P. Biedenkipf and H. J. Grabke, Corros. Sci., 39, 1193 (1997)   DOI   ScienceOn
6 F. J. Kohl, G. J. Santoro, C. A. Steams, G. C. Fryburg and D. E. Rosner, J. Electrochem. Soc., 126, 1054 (1979)   DOI
7 S. Kameswari, Oxid. met., 26, 33 (1973)   DOI   ScienceOn
8 S. H. Park, Y. D. Lee and Y. Y. Lee, J. Kor. Inst. Met. & Mater., 33, 1323 (1995)
9 C. R. Crayton and Y. C. Lu, Corros. Sci., 29, 7 (1989)   DOI   ScienceOn
10 H. Fujikawa and J. Murayama, Tetsu-to-Hagane, 69, 678 ( 1983)   DOI
11 D. Caplan and M. Cohen, Corrosion, 15, 141 (1959)
12 H. H. Davis, H. C. Graham and I. A. Krernes, Oxid. Met., 3, 431 (1971)   DOI
13 T. H. Stott, G. C. Wood, Y. Shida, D. P. Whittle and B. D. Bastow, Corros. Sci., 21, 599 (1981)   DOI   ScienceOn
14 M. Skashita and N. Sato, Corros. Sci., 17, 473 (1977)   DOI   ScienceOn
15 G. C. Allen and R. K. Wild, J. Electron. Spectroscopy, 5, 409 (1974)   DOI   ScienceOn
16 K. Bouhanek, D. Oquab and B. Pieraggi, Materials Science Forum, 251-254, 34 (1997)
17 Y. H. Lee and Y. S. Ahn, J. Kor. Inst. Met. & Mater., 30, 1514 (1992)
18 W. F. Smith, Structure and Properties of Engineering Alloys, 2nd, McGraw-Hill, p485, (1994)
19 F. H. Stott and F. I. Wei, Mater. Sci. Tech., 5, 1140 (1989)   DOI
20 S. Ling, T. A. Rahmel and R. Petkovic-Luton, Oxid. Met., 40, 180 (1993)   DOI
21 G. C. Wood, Corros. Sci., 2, 173 (1962)   DOI   ScienceOn
22 J. A. Geobel, F. S. Pettit and G. W. Goward, Met. Trans., 4, 261 (1973)   DOI
23 E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press, New York (1980)
24 S. Mitsushima, N. Kamiya and K. I. Ota, J. Electrochem. Soc., 137, 2713 (1990)   DOI
25 M. M. Kochergin and G. I. Stolyarava, J. Appl. Chem. USSR, 29, 789 (1956)
26 H. R. Copson, J. Electrochem. Soc., 100, 257 (1953)   DOI