DOI QR코드

DOI QR Code

Additive Manufacturing Optimization of Directed Energy Deposition-Processed Ti-6Al-4V Alloy using Energy Density and Powder Deposition Density

에너지 밀도 및 분말 증착 밀도를 고려한 직접 에너지 증착법 기반 Ti-6Al-4V 합금의 적층공정 최적화

  • Lee, Yukyeong (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Eun Sung (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Chun, Se-Ho (School of Mechanical Engineering, Pusan National University) ;
  • Seol, Jae Bok (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Sung, Hyokyung (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Oh, Jung Seok (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Hyoung Seop (Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Taekyung (School of Mechanical Engineering, Pusan National University) ;
  • Nam, Tae-Hyun (Department of Materials Engineering and Convergence Technology, Gyeongsang National University) ;
  • Kim, Jung Gi (Department of Materials Engineering and Convergence Technology, Gyeongsang National University)
  • 이유경 (경상국립대학교 나노신소재융합공학과) ;
  • 김은성 (포항공과대학교 신소재공학과) ;
  • 천세호 (부산대학교 기계공학부) ;
  • 설재복 (경상국립대학교 나노신소재융합공학과) ;
  • 성효경 (경상국립대학교 나노신소재융합공학과) ;
  • 오정석 (경상국립대학교 나노신소재융합공학과) ;
  • 김형섭 (포항공과대학교 신소재공학과) ;
  • 이태경 (부산대학교 기계공학부) ;
  • 남태현 (경상국립대학교 나노신소재융합공학과) ;
  • 김정기 (경상국립대학교 나노신소재융합공학과)
  • Received : 2021.12.02
  • Accepted : 2021.12.23
  • Published : 2021.12.28

Abstract

The process optimization of directed energy deposition (DED) has become imperative in the manufacture of reliable products. However, an energy-density-based approach without a sufficient powder feed rate hinders the attainment of an appropriate processing window for DED-processed materials. Optimizing the processing of DED-processed Ti-6Al- 4V alloys using energy per unit area (Eeff) and powder deposition density (PDDeff) as parameters helps overcome this problem in the present work. The experimental results show a lack of fusion, complete melting, and overmelting regions, which can be differentiated using energy per unit mass as a measure. Moreover, the optimized processing window (Eeff = 44~47 J/mm2 and PDDeff = 0.002~0.0025 g/mm2) is located within the complete melting region. This result shows that the Eeff and PDDeff-based processing optimization methodology is effective for estimating the properties of DED-processed materials.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (2020R1A4A3079417). This work was also financially supported by the Technology Innovation Program (20009993) funded by the Ministry of Trade, Industry & Energy (MOTIE).

References

  1. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Titanium and Titanium Alloys: Fundamentals and Applications, (2003).
  2. M. J. Donachie: Titanium: A Technical Guide, 2nd ed., ASM International, Materials Park, OH., (2000) 369.
  3. Z. M. Wang and E. O. Ezugwu: J. Mater. Process. Technol., 68 (1997) 262. https://doi.org/10.1016/S0924-0136(96)00030-1
  4. R. M. Mahamood and E. T. Akinlabi: Lasers Manuf. Mater. Process., 3 (2016) 9. https://doi.org/10.1007/s40516-015-0020-5
  5. P. Ferro, R. Meneghello, G. Savio and F. Berto: Int. J. Adv. Manuf. Tech., 110 (2020) 1911. https://doi.org/10.1007/s00170-020-05949-9
  6. J. Han, J. Yang, H. Yu, J. Yin, M. Gao, Z. Wang and X. Zeng: Rapid Prototyping. J., 23 (2017) 217. https://doi.org/10.1108/RPJ-12-2015-0193
  7. M. Z. Anna: Metals-Basel., 12 (2019) 2331.
  8. L. Thijs, F. Verhaeghe, T. Craeghs, JV. Humbeeck and J-P. Kruth: Acta Mater., 58 (2010) 3303. https://doi.org/10.1016/j.actamat.2010.02.004
  9. W. Xu, S. Sun, J. Elambasseril, Q. Liu, M. Brandt and M. Qian: JOM., 67 (2015) 668. https://doi.org/10.1007/s11837-015-1297-8
  10. X. Tian, J. Gunster, J. Melcher, D. Li and JG. Heinrich: J. Eur. Ceram. Soc., 29 (2009) 1903. https://doi.org/10.1016/j.jeurceramsoc.2008.12.002
  11. H. Gong, H. Gu, K. Zeng, J. J. S. Dilip, D. Pal and B. Stucker: Solid Free. Fabr. Symp., (2014) 256.
  12. L. C. Zhang and T. B. Sercombe: Key. Eng. Mater., 520 (2012) 226. https://doi.org/10.4028/www.scientific.net/KEM.520.226
  13. A. Simchi: Mater. Sci. Eng. A., 428 (2006) 148. https://doi.org/10.1016/j.msea.2006.04.117
  14. T. Peng and C. Chan: Int. J. Pr. Eng. Man-Gt., 5 (2018) 55.
  15. J. D. Majumdar and I. Manna: Sadhana-Acad. P. Eng. S., 28 (2003) 495.
  16. J. H. Lee, M. H. Suh, J. O. Kim and Y. H. Han: Korean Society of Laser Process., 2 (1999) 34.
  17. Z. Xiang, M. Yin, G. Dong, X. Mei and G. Yin: Results Phys., 9 (2018) 939. https://doi.org/10.1016/j.rinp.2018.03.047
  18. S. F. Corbin, E. Toyserkani and A. Khajepour: Mater. Sci. Eng. A., 354 (2003) 48. https://doi.org/10.1016/S0921-5093(02)00863-8
  19. A. Emamian, S. F. Corbin and A. Khajepour: Surf. Coat. Technol., 205 (2010) 2007. https://doi.org/10.1016/j.surfcoat.2010.08.087
  20. D. Nursyifaulkhair, N. Park, E. R. Baek and J.-B. L: J. Weld. Join., 37 (2019) 579. https://doi.org/10.5781/jwj.2019.37.6.7