• Title/Summary/Keyword: Ti powder

Search Result 1,432, Processing Time 0.025 seconds

Synthesis of TiO2 Nanowires by Thermal Oxidation of Titanium Alloy Powder (타이타늄 합금 분말의 열적산화를 통한 TiO2 나노와이어의 합성)

  • Kim, Yoo-Young;Cho, Kwon-Koo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.48-53
    • /
    • 2018
  • One-dimensional rutile $TiO_2$ is an important inorganic compound with applicability in sensors, solar cells, and Li-based batteries. However, conventional synthesis methods for $TiO_2$ nanowires are complicated and entail risks of environmental contamination. In this work, we report the growth of $TiO_2$ nanowires on a Ti alloy powder (Ti-6wt%Al-4wt%V, Ti64) using simple thermal oxidation under a limited supply of $O_2$. The optimum condition for $TiO_2$ nanowire synthesis is studied for variables including temperature, time, and pressure. $TiO_2$ nanowires of ${\sim}5{\mu}m$ in length and 100 nm in thickness are richly synthesized under the optimum condition with single-crystalline rutile phases. The formation of $TiO_2$ nanowires is greatly influenced by synthesis temperature and pressure. The synthesized $TiO_2$ nanowires are characterized using field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM).

Dispersion of $BaTiO_3$ Powder in PCB Material (PCB 소재용 RCC에서 $BaTiO_3$ Powder의 분산)

  • Lee, Ji-Ae;Shin, Hyo-Soon;Kim, Jong-Hee;Kim, Kab-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.224-225
    • /
    • 2006
  • $BaTiO_3$ powder를 epoxy/solvent에 혼합한 슬러리와 solvent에 혼합한 슬러리의 분산 특성을 평가하기 위하여 분산제인 silane을 $BaTiO_3$ powder 표면에 코팅한 powder를 이용하여 분산실험을 진행하였다. Silane 표면 코팅 량에 따른 $BaTiO_3$ 슬러리와 $BaTiO_3$/epoxy 복합 슬러리의 분산 특성은 서로 다른 경향으로 나타남을 확인하였으며, silanae 최적 첨가량은 $BaTiO_3$/solvent 슬러리의 경우 0.3~0.5 wt%, $BaTiO_3$/epoxy/solvent 슬러리의 경우 1wt% 이상 첨가한 조건이었다. 또한 분산성 측정의 방법으로 점도 측정 방법과 함께 표면 거칠기 측정 방법의 가능성을 확인하였다.

  • PDF

Photocatalytic Activity of $TiO_2$ Powder with an Oxygen Deficiency in the Visible-Light Region (산소 결함형 $TiO_2$ 분말의 가시광에 대한 광촉매 활성)

  • Yang, Chun-Hoe
    • Journal of the Korean Applied Science and Technology
    • /
    • v.24 no.1
    • /
    • pp.1-9
    • /
    • 2007
  • It prepared the $TiO_2$ powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium $dioxide(TiO_2)$ by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase $TiO_2$ powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the $TiO_2$ powder for the visible light region, which also can be easily produced by wet process. The wet process $TiO_2$ absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated $TiO_2$. The AH-380 $TiO_2$ powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated $TiO_2$ powder.

Synthesis of TiO2-xNx Using Thermal Plasma and Comparison of Photocatalytic Characteristics (열플라즈마에 의한 TiO2-xNx의 합성 및 광촉매 특성 비교)

  • Kim, Min-Hee;Park, Dong-Wha
    • Applied Chemistry for Engineering
    • /
    • v.19 no.3
    • /
    • pp.270-276
    • /
    • 2008
  • $N_2$ doped $TiO_2$ nano-sized powder was prepared using a DC arc plasma jet and investigated with XRD, BET, SEM, TEM, and photo-catalytic decomposition. Recently the research interest about the nano-sized $TiO_2$ powder has been increased to improve its photo-catalytic activity for the removal of environmental pollutants. Nitrogen gas, reacting gas, and titanium tetrachloride ($TiCl_4$) were used as the raw materials and injected into the plasma reactor to synthesize the $N_2$ doped $TiO_2$ power. The particle size and XRD peaks of the synthesized powder were analyzed as a function of the flow rate of the nitrogen gas. Also, the characteristics of the photo-catalytic decomposition using the prepared powder were studied. For comparing the photo-catalytic decomposition performance of $TiO_2$ powder with that of $TiO_2$ coating, $TiO_2$ thin films were prepared by the spin coating and the pulsed laser deposition. For the results of the acetaldehyde decomposition, the photo-catalytic activity of $TiO_{2-x}N_x$ powder was higher than that of the pure $TiO_2$ powder in the visible light region. For the methylene blue decomposition, the decomposition efficiency of $TiO_2$ powder was also higher than that of $TiO_2$ film.

Study on Manufacture of High Purity TiCl4 and Synthesis of High Purity Ti Powders (고순도 TiCl4 제조 및 이를 활용한 고순도 Ti 분말 제조 공정 연구)

  • Lee, Jieun;Yoon, Jin-Ho;Lee, Chan Gi
    • Journal of Powder Materials
    • /
    • v.26 no.4
    • /
    • pp.282-289
    • /
    • 2019
  • Ti has received considerable attention for aerospace, vehicle, and semiconductor industry applications because of its acid-resistant nature, low density, and high mechanical strength. A common precursor used for preparing Ti materials is $TiCl_4$. To prepare high-purity $TiCl_4$, a process based on the removal of $VOCl_3$ has been widely applied. However, $VOCl_3$ removal by distillation and condensation is difficult because of the similar physical properties of $TiCl_4$ and $VOCl_3$. To circumvent this problem, in this study, we have developed a process for $VOCl_3$ removal using Cu powder and mineral oil as purifying agents. The effects of reaction time and temperature, and ratio of purifying agents on the $VOCl_3$ removal efficiency are investigated by chemical and structural measurements. Clear $TiCl_4$ is obtained after the removal of $VOCl_3$. Notably, complete removal of $VOCl_3$ is achieved with 2.0 wt% of mineral oil. Moreover, the refined $TiCl_4$ is used as a precursor for the synthesis of Ti powder. Ti powder is fabricated by a thermal reduction process at $1,100^{\circ}C$ using an $H_2-Ar$ gas mixture. The average size of the Ti powder particles is in the range of $1-3{\mu}m$.

Preparation and Characterization of $Ag/TiO_{2-x}N_x$ Nanoparticles

  • Liu, Z.Q.;Li, Z.H.;Zhou, Y.P.;Ge, C.C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.436-437
    • /
    • 2006
  • The $Ag/TiO_{2-x}N_x$ nanoparticles were synthesized by photochemical deposition in a $TiO_{2-X}N_X$ suspension system. The prepared products were characterized by means of XRD, Uv-vis and photoluminescence spectra (PL). Its photocatalytic activity was investigated by the decomposition of methylene blue (MB) solution under illumination of visible and ultraviolet light, respectively. Compared to $TiO_{2-x}N_x$, the photocatalytic activity of the as-prepared $Ag/TiO_{2-x}N_x$ is obviously enhanced due to the decreasing recombination of a photoexcitated electron-hole pairs. The Mechanism in which photocatalytic activity is enhanced has been discussed in detail.

  • PDF

Microstructure, Properties and Heat Treatment of Steel Bonded TiC Cermets

  • Farid, Akhtar;Guo, Shiju;Shah, Jawad Ali;Feng, Peizhong
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.618-619
    • /
    • 2006
  • The binder phase for TiC reinforced steel matrix composite was added in the form of elemental powders and master alloy powders. The microstructures, binder phase variation with TiC content and mechanical properties were evaluated. The addition of a type of binder phase largely effects the microstructure and mechanical properties. The binder phase variation from starting composition was observed with increase in wt% TiC content and this variation was higher when the master alloy powders were used as a binder. The response to heat treatment was decreased with an increase in TiC content due to the shift of binder phase from the starting composition.

  • PDF

Preparation of $TiO_2$ nanopowder using titanium tetra-isopropoxide and effect of pH (Titanium tetra-isopropoxide를 이용한 $TiO_2$ Nanopowder 제초와 pH의 영향)

  • 임창성;오원춘;류정호;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.91-95
    • /
    • 2002
  • $TiO_2$ nanopowder was successfully prepared using a titanium tetra-isopropoxide. Subsequently, the effect of pH on the characteristics of the prepared $TiO_2$ nanopowder was evaluated depending on the amounts of the catalysts such as HCI and NH40H. The morphology and phase transformation of $TiO_2$ powder prepared by hydrolysis of titanium tetraisopropoxide were strongly influenced by the presence of the catalysts. In the case of using $NH_4$OH, the morphology of the $TiO_2$ powder exhibited powder form. For the HCI catalyst, it showed bulk or granule form. The phase transformations of amorphous $Ti(OH)_4$ to anatase $TiO_2$ and the anatase to rutile was significantly influenced by the kind and amount of the catalysts.

The Effect of Ti Powder addition on Compaction Behavior of TiO2 Nano Powder (Ti 분말 첨가가 TiO2 나노 분말의 성형성에 미치는 영향)

  • Park, Jin-Sub;Kim, Hyo-Seob;Lee, Ki-Seok;Lee, Jeong-Goo;Rhee, Chang-Kyu;Hong, Soon-Jik
    • Journal of Powder Materials
    • /
    • v.16 no.3
    • /
    • pp.223-230
    • /
    • 2009
  • The compaction response of $TiO_2$ nano powders with an addition of Ti powders prepared by magnetic pulsed compaction and subsequent sintering processes was investigated. All kinds of different bulk exhibited an average shrinkage of about 12% for different MPCed pressure and sintering temperature, which were approximately 50% lower than those fabricated by general process (20%) and a maximum density of around 92.7% was obtained for 0.8GPa MPCed pressure and $1400^{\circ}C$ sintering temperature. The addition of Ti powder induced an increase in the formability and hardness of the sintered $TiO_2$. But the lower densities were obtained on sintering with addition of over 10 (wt%) Ti powder due to generation of crack during sintering. Subsequently it was verified that the optimum compaction pressure in MPC and sintering temperature were 0.8GPa and $1400^{\circ}C$, respectively.

Effect of Heat Treatment Atmosphere on the Microstructure of TiH2-MoO3 Powder Mixtures (열처리 분위기가 TiH2-MoO3 혼합분말의 미세조직 특성에 미치는 영향)

  • Jeon, Ki Cheol;Park, Sung Hyun;Kwon, Na-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.23 no.4
    • /
    • pp.303-306
    • /
    • 2016
  • An optimum route to synthesize Ti-Mo system powders is investigated by analyzing the effect of the heat treatment atmosphere on the formation of the reaction phase by dehydrogenation and hydrogen reduction of ball-milled $TiH_2-MoO_3$ powder mixtures. Homogeneous powder mixtures with refined particles are prepared by ball milling for 24 h. XRD analysis of the heat-treated powder in a hydrogen atmosphere shows $TiH_2$ and $MoO_3$ peaks in the initial powders as well as the peaks corresponding to the reaction phase species, such as $TiH_{0.7}$, TiO, $MoO_2$, Mo. In contrast, powder mixtures heated in an argon atmosphere are composed of Ti, TiO, Mo and $MoO_3$ phases. The formation of reaction phases dependent on the atmosphere is explained by the partial pressure of $H_2$ and the reaction temperature, based on thermodynamic considerations for the dehydrogenation reaction of $TiH_2$ and the reduction behavior of $MoO_3$.