Browse > Article
http://dx.doi.org/10.4150/KPMI.2016.23.4.303

Effect of Heat Treatment Atmosphere on the Microstructure of TiH2-MoO3 Powder Mixtures  

Jeon, Ki Cheol (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Park, Sung Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
Publication Information
Journal of Powder Materials / v.23, no.4, 2016 , pp. 303-306 More about this Journal
Abstract
An optimum route to synthesize Ti-Mo system powders is investigated by analyzing the effect of the heat treatment atmosphere on the formation of the reaction phase by dehydrogenation and hydrogen reduction of ball-milled $TiH_2-MoO_3$ powder mixtures. Homogeneous powder mixtures with refined particles are prepared by ball milling for 24 h. XRD analysis of the heat-treated powder in a hydrogen atmosphere shows $TiH_2$ and $MoO_3$ peaks in the initial powders as well as the peaks corresponding to the reaction phase species, such as $TiH_{0.7}$, TiO, $MoO_2$, Mo. In contrast, powder mixtures heated in an argon atmosphere are composed of Ti, TiO, Mo and $MoO_3$ phases. The formation of reaction phases dependent on the atmosphere is explained by the partial pressure of $H_2$ and the reaction temperature, based on thermodynamic considerations for the dehydrogenation reaction of $TiH_2$ and the reduction behavior of $MoO_3$.
Keywords
$TiH_2-MoO_3$ powder; Dehydrogenation; Hydrogen reduction; Microstructure;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Structure and Properties of Titanium and Titanium Alloys, C. Leyens and M. Peters (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003) 1.
2 G. Lutjering: Mater. Sci. Eng., A243 (1998) 32.
3 H.J. Rack and J.I. Qazi: Mater. Sci. Eng., C26 (2006) 1269.
4 W.F. Ho, C.P. Ju and J.H.C. Lin: Biomater., 20 (1999) 2114.
5 R. Bhagat, M. Jackson, D. Inman and R. Dashwood: J. Electrochem. Soc., 156 (2009) E1.   DOI
6 N.T.C. Oliveira, G. Aleixo, R. Caram and A.C. Guastaldi: Mater. Sci. Eng., A452-453 (2007) 727.
7 K.C. Jeon, H.-E. Lee, D.-M. Yim and S.-T. Oh: J. Korean Powder Metall. Inst., 22 (2015) 266 (Korean).   DOI
8 G.-S. Kim, Y.J. Lee, D.-G. Kim and Y.D. Kim: J. Alloy. Compd., 454 (2008) 327.   DOI
9 V. Bhosle, E.G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng., A356 (2003) 190.
10 K.G. Prashanth: Mater. Manuf. Process., 25 (2010) 974.   DOI
11 W.-E Wang: J. Alloy. Compd., 238 (1996) 6.   DOI
12 Y. Li, X.M. Chou and L. Yu: Powder Metall., 49 (2006) 236.   DOI
13 A. Rasooli, M.A. Boutorabi, M. Divandari and A. Azarniya: Bull. Mater. Sci., 36 (2013) 301.   DOI
14 Y.-H. Li, R.-B. Chen, G.-X. Qi, Z.-T. Wang and Z.-Y. Deng: J. Alloys Compd., 485 (2009) 215.   DOI
15 W. Lee and S.-T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 446.   DOI