DOI QR코드

DOI QR Code

Effect of Heat Treatment Atmosphere on the Microstructure of TiH2-MoO3 Powder Mixtures

열처리 분위기가 TiH2-MoO3 혼합분말의 미세조직 특성에 미치는 영향

  • Jeon, Ki Cheol (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Park, Sung Hyun (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Kwon, Na-Yeon (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Oh, Sung-Tag (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 전기철 (서울과학기술대학교 신소재공학과) ;
  • 박성현 (서울과학기술대학교 신소재공학과) ;
  • 권나연 (서울과학기술대학교 신소재공학과) ;
  • 오승탁 (서울과학기술대학교 신소재공학과)
  • Received : 2016.07.28
  • Accepted : 2016.08.08
  • Published : 2016.08.28

Abstract

An optimum route to synthesize Ti-Mo system powders is investigated by analyzing the effect of the heat treatment atmosphere on the formation of the reaction phase by dehydrogenation and hydrogen reduction of ball-milled $TiH_2-MoO_3$ powder mixtures. Homogeneous powder mixtures with refined particles are prepared by ball milling for 24 h. XRD analysis of the heat-treated powder in a hydrogen atmosphere shows $TiH_2$ and $MoO_3$ peaks in the initial powders as well as the peaks corresponding to the reaction phase species, such as $TiH_{0.7}$, TiO, $MoO_2$, Mo. In contrast, powder mixtures heated in an argon atmosphere are composed of Ti, TiO, Mo and $MoO_3$ phases. The formation of reaction phases dependent on the atmosphere is explained by the partial pressure of $H_2$ and the reaction temperature, based on thermodynamic considerations for the dehydrogenation reaction of $TiH_2$ and the reduction behavior of $MoO_3$.

Keywords

References

  1. M. Peters, J. Hemptenmacher, J. Kumpfert and C. Leyens: Structure and Properties of Titanium and Titanium Alloys, C. Leyens and M. Peters (Eds.), Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim (2003) 1.
  2. G. Lutjering: Mater. Sci. Eng., A243 (1998) 32.
  3. H.J. Rack and J.I. Qazi: Mater. Sci. Eng., C26 (2006) 1269.
  4. W.F. Ho, C.P. Ju and J.H.C. Lin: Biomater., 20 (1999) 2114.
  5. R. Bhagat, M. Jackson, D. Inman and R. Dashwood: J. Electrochem. Soc., 156 (2009) E1. https://doi.org/10.1149/1.2999340
  6. N.T.C. Oliveira, G. Aleixo, R. Caram and A.C. Guastaldi: Mater. Sci. Eng., A452-453 (2007) 727.
  7. K.C. Jeon, H.-E. Lee, D.-M. Yim and S.-T. Oh: J. Korean Powder Metall. Inst., 22 (2015) 266 (Korean). https://doi.org/10.4150/KPMI.2015.22.4.266
  8. G.-S. Kim, Y.J. Lee, D.-G. Kim and Y.D. Kim: J. Alloy. Compd., 454 (2008) 327. https://doi.org/10.1016/j.jallcom.2006.12.039
  9. V. Bhosle, E.G. Baburaj, M. Miranova and K. Salama: Mater. Sci. Eng., A356 (2003) 190.
  10. K.G. Prashanth: Mater. Manuf. Process., 25 (2010) 974. https://doi.org/10.1080/10426911003720870
  11. W.-E Wang: J. Alloy. Compd., 238 (1996) 6. https://doi.org/10.1016/0925-8388(96)02264-5
  12. Y. Li, X.M. Chou and L. Yu: Powder Metall., 49 (2006) 236. https://doi.org/10.1179/174329006X95338
  13. A. Rasooli, M.A. Boutorabi, M. Divandari and A. Azarniya: Bull. Mater. Sci., 36 (2013) 301. https://doi.org/10.1007/s12034-013-0455-2
  14. Y.-H. Li, R.-B. Chen, G.-X. Qi, Z.-T. Wang and Z.-Y. Deng: J. Alloys Compd., 485 (2009) 215. https://doi.org/10.1016/j.jallcom.2009.06.003
  15. W. Lee and S.-T. Oh: J. Korean Powder Metall. Inst., 19 (2012) 446. https://doi.org/10.4150/KPMI.2012.19.6.446