Browse > Article
http://dx.doi.org/10.12925/jkocs.2007.24.1.1

Photocatalytic Activity of $TiO_2$ Powder with an Oxygen Deficiency in the Visible-Light Region  

Yang, Chun-Hoe (Department of Chemical Engineering, Hanbat National University)
Publication Information
Journal of the Korean Applied Science and Technology / v.24, no.1, 2007 , pp. 1-9 More about this Journal
Abstract
It prepared the $TiO_2$ powder which has photo-catalytic activity in the visible-light by the wet process with titanium oxysulfate. The titanium $dioxide(TiO_2)$ by the wet process creates a new absorption band in the visible light region, and is expected to create photocatalytic activity in this region. Anatase $TiO_2$ powder which has photocatalytic activity in the visible light region, is treated using microwave and radio-frequency(RF) plasma. But, the $TiO_2$ powder for the visible light region, which also can be easily produced by wet process. The wet process $TiO_2$ absorbed visible light between 400nm and 600nm, and showed a high activity in this region, as measured by the oxidation removal of aceton from the gas phase. The AH-380 sample appears the yellow color to be strong, the catalytic activity in the visible ray was excellent in comparison with the plasma-treated $TiO_2$. The AH-380 $TiO_2$ powder, which can be easily produced on a large scale, is expected to have higher efficiency in utilizing solar energy than the plasma-treated $TiO_2$ powder.
Keywords
titanium oxysulfate; wet process; photocatalytic activity; plasma;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Wakamura, K. Hashimoto, and T. Watanabe, Langmuir, 19, 3428 (2003)   DOI   ScienceOn
2 S. Ito, T. Ihara, Y. Miura and M. Kiboku, Proceeding of Proc. Fourth Annual Int. Conf. of Plasma Chern. and Technology, San Diego, U.S.A, November, 157 (1987)
3 I Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, and K. Takeuchi, J of Molecular Catalysis A, 161, 205 (2000)   DOI
4 T. Morikawa, R. Asahi, T. Ohwaki, K. Aoki, and Y. Taga, Jpn J. Appl. Phys., 40(6A), part 2, 561 (2001)   DOI   ScienceOn
5 K. Iseda, Bull. Chem Soc. Jpn. 64, 1160 (1991)   DOI
6 M. El-Maazawi, A. N. Finken, A. B. Nair, and V. H. Grassian, J of Catalysis, 191, 138 (2000)   DOI   ScienceOn
7 K. Tanaka, M. F. V. Capulr, and T. Hisanage, Chem Phys. Lett. 187, 73 (1991)   DOI   ScienceOn
8 D. C. Cronemeyer, Phys. Rev., 113, 1222 (1959)   DOI
9 T. Suzuki and Y. Hayakawa, Proceedings of the International Congress on Phosphorus Compounds, IMPHOS, Paris, 381 (977)
10 H. Al-Ekabi and A. Safarzadeh-Amiril, Advanced Technology for Destructuon of Organic Pollutants by Photocatalysis, Toronto, Canada, June, 4 (1990)
11 T. Ohno, D. Haga, K. Fujihara, K. Kaizaki, and M. Matsumura, J Phys. Chem, 101, 6415 (1997)   DOI   ScienceOn
12 S. Sato, Chem. Phy. Lett., 123(1),(1986)
13 T. Ihara, Y. Iriyama, S. Sugihara, M. Ando, and M. Miyoshi, J of Mat. Sci, 36, 4201 (2001)   DOI   ScienceOn
14 M. Jansen and H. P. Letschert, Nature, 404, 980 (2000)   DOI   ScienceOn
15 S. J. Teichner and M. Forrnenti, Fundamemtals and Developments of Photocatalytic and Photoelectrochemical Processes, edited by M. Schiavello, NATO ASI Series, Series C, Vol.146, p.457 (1985)
16 Y. J. Chung, W. H. Roo, and C. H. Yang, J of Korean Oil Chem. Soc., 21, 140 (2004)
17 J. Fang, L. Su, J.Wu, Y. Shen, and Z. Lu, New J Chem, 21, 839 (1997)
18 H. K. Klug and L. E. Alexander, X -ray Diffraction Procedures for Polycrystalline and Amorphous Materials, Wiley-Interscience, New York, 2nd ed., 687 (1973)